L- and V-curves for optimal smoothing

被引:35
|
作者
Frasso, Gianluca [1 ]
Eilers, Paul H. C. [2 ]
机构
[1] Univ Liege, Inst Sci Humaines & Sociales, Liege, Belgium
[2] Erasmus Univ, Med Ctr, Dept Biostat, NL-3000 DR Rotterdam, Netherlands
关键词
Cross-validation; L-curve; V-curve; Whittaker and P-spline smoothers; REGULARIZATION;
D O I
10.1177/1471082X14549288
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The L-curve is a tool for the selection of the regularization parameter in ill-posed inverse problems. It is a parametric plot of the size of the residuals vs that of the penalty. The corner of the L indicates the right amount of regularization. In the context of smoothing the L-curve is easy to compute and works surprisingly well, even for data with correlated noise. We present the theoretical background and applications to real data together with an alternative criterion for finding the corner automatically. We introduce as simplification, the V-curve, which replaces finding the corner of the L-curve by locating a minimum.
引用
收藏
页码:91 / 111
页数:21
相关论文
共 50 条
  • [32] Optimal smoothing for guaranteed service
    Le Boudec, JY
    Verscheure, O
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2000, 8 (06) : 689 - 696
  • [33] Optimal smoothing for convex polytopes
    Ghomi, M
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 : 483 - 492
  • [34] PROPERTIES OF OPTIMAL LINEAR SMOOTHING
    ANDERSON, BD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (01) : 114 - &
  • [35] Optimal design for smoothing splines
    Holger Dette
    Viatcheslav B. Melas
    Andrey Pepelyshev
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 981 - 1003
  • [36] ON OPTIMAL LINEAR SMOOTHING THEORY
    MEDITCH, JS
    INFORMATION AND CONTROL, 1967, 10 (06): : 598 - +
  • [37] L-肉碱
    郑璞
    孙志浩
    中国食品添加剂, 1999, (02) : 72 - 74
  • [38] Optimal smoothing for guaranteed service
    Le Boudec, JY
    Verscheure, O
    TELETRAFFIC ENGINEERING IN A COMPETITIVE WORLD, 1999, 3 : 677 - 686
  • [39] Optimal smoothing of accounting earnings
    IMA J Math Appl Bus Ind, 1 (1-14):
  • [40] Optimal design for smoothing splines
    Dette, Holger
    Melas, Viatcheslav B.
    Pepelyshev, Andrey
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (05) : 981 - 1003