L- and V-curves for optimal smoothing

被引:35
|
作者
Frasso, Gianluca [1 ]
Eilers, Paul H. C. [2 ]
机构
[1] Univ Liege, Inst Sci Humaines & Sociales, Liege, Belgium
[2] Erasmus Univ, Med Ctr, Dept Biostat, NL-3000 DR Rotterdam, Netherlands
关键词
Cross-validation; L-curve; V-curve; Whittaker and P-spline smoothers; REGULARIZATION;
D O I
10.1177/1471082X14549288
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The L-curve is a tool for the selection of the regularization parameter in ill-posed inverse problems. It is a parametric plot of the size of the residuals vs that of the penalty. The corner of the L indicates the right amount of regularization. In the context of smoothing the L-curve is easy to compute and works surprisingly well, even for data with correlated noise. We present the theoretical background and applications to real data together with an alternative criterion for finding the corner automatically. We introduce as simplification, the V-curve, which replaces finding the corner of the L-curve by locating a minimum.
引用
收藏
页码:91 / 111
页数:21
相关论文
共 50 条
  • [11] Smoothing the curves on a winding road
    Toensmeier, PA
    MODERN PLASTICS, 1999, 76 (08): : 55 - 55
  • [12] SMOOTHING CURVES BY REFLEXIVE SHEAVES
    BOLONDI, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (04) : 797 - 803
  • [13] Wavelets Smoothing for Multidimensional Curves
    Pigoli, Davide
    Sangalli, Laura M.
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 255 - 261
  • [14] Nonparametric Smoothing of Yield Curves
    Tanggaard C.
    Review of Quantitative Finance and Accounting, 1997, 9 (3) : 251 - 267
  • [15] Search for lepton flavor violating τ- decays into l-η, l-η′ and l-π0
    Miyazaki, Y.
    Adachi, I.
    Aihara, H.
    Anipko, D.
    Arinstein, K.
    Aulchenko, V.
    Aziz, T.
    Bakich, A. M.
    Arberio, E. B.
    Bay, A.
    Bedny, I.
    Belous, K.
    Bitenc, U.
    Bizjak, I.
    Bondar, A.
    Bracko, M.
    Browder, T. E.
    Chen, A.
    Chen, W. T.
    Cheon, B. G.
    Choi, Y.
    Choi, Y. K.
    Dalseno, J.
    Eidelman, S.
    Epifanov, D.
    Fratina, S.
    Gabyshev, N.
    Go, A.
    Gorisek, A.
    Ha, H.
    Haba, J.
    Hayasaka, K.
    Hayashii, H.
    Hazumi, M.
    Heffernan, D.
    Hokuue, T.
    Hoshi, Y.
    Hou, S.
    Hou, W.-S.
    Iijima, T.
    Imoto, A.
    Inami, K.
    Ishikawa, A.
    Itoh, R.
    Iwasaki, M.
    Iwasaki, Y.
    Kaji, H.
    Kapusta, P.
    Kawai, H.
    Kawasaki, T.
    PHYSICS LETTERS B, 2007, 648 (5-6) : 341 - 350
  • [16] SYNTHESIS OF L-(-)-MYCAROSE AND L-(-)-CLADINOSE
    LEMAL, DM
    PACHT, PD
    WOODWARD, RB
    TETRAHEDRON, 1962, 18 (NOV) : 1275 - &
  • [17] Optimal cepstrum smoothing
    Sandberg, Johan
    Hansson-Sandsten, Maria
    SIGNAL PROCESSING, 2012, 92 (05) : 1290 - 1301
  • [18] OPTIMAL MEDIAN SMOOTHING
    HARDLE, W
    STEIGER, W
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1995, 44 (02): : 258 - 264
  • [19] Optimal expectile smoothing
    Schnabel, Sabine K.
    Eilers, Paul H. C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4168 - 4177
  • [20] l-分解与l-维数
    曾月迪
    林丽芳
    数学的实践与认识, 2020, 50 (18) : 167 - 173