Global Mittag-Leffler Synchronization for Neural Networks Modeled by Impulsive Caputo Fractional Differential Equations with Distributed Delays

被引:9
|
作者
Agarwal, Ravi [1 ,2 ]
Hristova, Snezhana [3 ]
O'Regan, Donal [4 ]
机构
[1] Texas A&M Univ Kingsville, Dept Math, Kingsville, TX 78363 USA
[2] Florida Inst Technol, Math, Melbourne, FL 32901 USA
[3] Paisij Hilendarski Univ Plovdiv, Dept Appl Math & Modeling, Tzar Asen 24, Plovdiv 4000, Bulgaria
[4] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway H91 CF50, Ireland
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 10期
关键词
fractional-order neural networks; delays; distributed delays; impulses; Mittag-Leffler synchronization; Lyapunov functions; Razumikhin method; STABILITY ANALYSIS; TIME; SYSTEMS;
D O I
10.3390/sym10100473
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The synchronization problem for impulsive fractional-order neural networks with both time-varying bounded and distributed delays is studied. We study the case when the neural networks and the fractional derivatives of all neurons depend significantly on the moments of impulses and we consider both the cases of state coupling controllers and output coupling controllers. The fractional generalization of the Razumikhin method and Lyapunov functions is applied. Initially, a brief overview of the basic fractional derivatives of Lyapunov functions used in the literature is given. Some sufficient conditions are derived to realize the global Mittag-Leffler synchronization of impulsive fractional-order neural networks. Our results are illustrated with examples.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
    Rifhat, Ramziya
    Muhammadhaji, Ahmadjan
    Teng, Zhidong
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 205 - 213
  • [2] Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations
    Agarwal, R.
    Hristova, S.
    O'Regan, D.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 689 - 705
  • [3] MITTAG-LEFFLER STABILITY FOR NON-INSTANTANEOUS IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH DELAYS
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    MATHEMATICA SLOVACA, 2019, 69 (03) : 583 - 598
  • [4] Mittag-Leffler Stabilization of Impulsive Fractional-Order Neural Networks with Continuous and Distributed Delays
    Ruan, Xiaoli
    Liu, Jingping
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 383 - 388
  • [5] Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays
    Ivanka Stamova
    Nonlinear Dynamics, 2014, 77 : 1251 - 1260
  • [6] Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays
    Stamova, Ivanka
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1251 - 1260
  • [7] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Xujun Yang
    Chuandong Li
    Tingwen Huang
    Qiankun Song
    Junjian Huang
    Neural Processing Letters, 2018, 48 : 459 - 479
  • [8] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Huang, Junjian
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 459 - 479
  • [9] Mittag–Leffler Stability for Impulsive Caputo Fractional Differential Equations
    R. Agarwal
    S. Hristova
    D. O’Regan
    Differential Equations and Dynamical Systems, 2021, 29 : 689 - 705
  • [10] The global Mittag-Leffler synchronization problem of Caputo fractional-order inertial memristive neural networks with time-varying delays
    Wang Y.
    Li J.
    Soft Computing, 2024, 28 (13-14) : 8247 - 8257