Easing Parameter Sensitivity Analysis of Netlogo Simulations using SPARTAN

被引:1
|
作者
Alden, Kieran [1 ,2 ,3 ,4 ]
Timmis, Jon [1 ,4 ]
Coles, Mark [1 ,2 ,3 ]
机构
[1] Univ York, York Computat Immunol Lab, York, N Yorkshire, England
[2] Univ York, Hull York Med Sch, Ctr Immunol & Infect, York, N Yorkshire, England
[3] Univ York, Dept Biol, York, N Yorkshire, England
[4] Univ York, Dept Elect, York, N Yorkshire, England
基金
英国惠康基金;
关键词
D O I
10.7551/978-0-262-32621-6-ch100
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In attempts to further understand complex systems at an individual level, the application of agent-based modeling is becoming prevalent across a range of academic disciplines. With the advantages of being multi-platform, requiring little programming experience, and supported by a large number of freely available case study examples, Netlogo has become a popular choice as the software tool to apply in the construction of agent-based models. To utilize the constructed model as an informative or predictive tool, statistical analyses can be performed to reveal the influence that a parameter has on simulation behavior, offering an insight into the system under study. Here we demonstrate the integration of Netlogo's parameter sweep function, Behavior Space, with an extended version of SPARTAN, our previously published open source statistical package for performing local and global sensitivity analyses. With the addition of SPARTAN, the researcher can automatically create Netlogo experiment files for both local (individual parameter) and global (latin-hypercube and Fourier frequency) analyses, run these experiments in Netlogo, and receive detailed statistical information on the influence a parameter has on simulation response: vital information for translating a simulation result to a hypothesis grounded in the system being studied. To ensure our example work is reproducible, we demonstrate use of SPARTAN using the Virus transmission and perpetuation model available in the Netlogo model library.
引用
收藏
页码:622 / 628
页数:7
相关论文
共 50 条
  • [21] Early detection of carotid stenosis using sensitivity analysis and parameter estimation
    Gul, Raheem
    Hafeez, Saba
    Haq, Shamsul
    Shahzad, Aamir
    Zubair, Muhammad
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (11):
  • [22] A sensitivity analysis approach for informative dropout using shared parameter models
    Su, Li
    Li, Qiuju
    Barrett, Jessica K.
    Daniels, Michael J.
    BIOMETRICS, 2019, 75 (03) : 917 - 926
  • [23] Stormwater Detention System Parameter Sensitivity and Uncertainty Analysis Using SWMM
    Knighton, James
    Lennon, Edward
    Bastidas, Luis
    White, Eric
    JOURNAL OF HYDROLOGIC ENGINEERING, 2016, 21 (08)
  • [24] Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis
    Sehrawat, Priyanka
    Sarkar, Debasis
    Kumar, Jitendra
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (25) : 8673 - 8684
  • [25] Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis
    Sehrawat, Priyanka
    Sarkar, Debasis
    Kumar, Jitendra
    Industrial and Engineering Chemistry Research, 2022, 61 (25): : 8673 - 8684
  • [26] Intelligent parameter reduction using rough sets theory and sensitivity analysis
    Montazer, Gh.A.
    Sabzevari, Reza
    Pour Khatir, H.Gh.
    WSEAS Transactions on Systems, 2007, 6 (03): : 623 - 628
  • [27] Using the Sensitivity Matrix in the Parameter Analysis of an Electric Power System.
    Eremia, M.
    Crisciu, H.
    Buletinul Institutului Politehnic Gheorghe Gheorghiu-Dej Bucuresti, Seria Electrotehnica, 1979, 41 (01): : 49 - 55
  • [28] Early detection of carotid stenosis using sensitivity analysis and parameter estimation
    Raheem Gul
    Saba Hafeez
    Shamsul Haq
    Aamir Shahzad
    Muhammad Zubair
    The European Physical Journal Plus, 136
  • [29] Process verification of a hydrological model using a temporal parameter sensitivity analysis
    Pfannerstill, M.
    Guse, B.
    Reusser, D.
    Fohrer, N.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2015, 19 (10) : 4365 - 4376
  • [30] Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations
    Kamran, Faisal
    Andersen, Peter E.
    APPLIED OPTICS, 2015, 54 (23) : 7099 - 7105