Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis

被引:0
|
作者
Sehrawat, Priyanka [1 ]
Sarkar, Debasis [2 ]
Kumar, Jitendra [3 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol Kharagpur, Dept Chem Engn, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol Ropar, Dept Math, Rupnagar 140001, Punjab, India
关键词
POLYNOMIAL CHAOS; MULTIOBJECTIVE OPTIMIZATION; QUADRATURE METHOD; QUANTIFICATION; AGGREGATION; BREAKAGE; MOMENTS; DESIGN;
D O I
10.1021/acs.iecr.2c00106
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The accurate estimation of sensitive parameters in a mathematical model predicting the outcome of a real experiment is of great importance in studying a complex physical phenomenon. A systematic methodology based on the uncertainty and sensitivity analysis framework is proposed for precise estimation of model parameters. The nonintrusive polynomial chaos expansion and the Sobol'-based sensitivity indices are used to quantify the uncertainties in the model prediction due to parameter uncertainties, and the Monte Carlo method is used for the validation of uncertainty quantification results. A population balance model for an unseeded batch cooling crystallization of L-asparagine monohydrate with two different sets of kinetic models for nucleation and crystal growth is selected to demonstrate the methodology. The results clearly demonstrate the effectiveness of the proposed strategy in improving the predictive ability of the population balance model. For models involving many uncertain parameters, the proposed strategy can be adopted to rank parameters by decreasing importance and then achieve precise estimation of the more significant parameters using a suitable optimization algorithm and experimental data set.
引用
收藏
页码:8673 / 8684
页数:12
相关论文
共 50 条
  • [1] Parameter Identification in Population Balance Models Using Uncertainty and Sensitivity Analysis
    Sehrawat, Priyanka
    Sarkar, Debasis
    Kumar, Jitendra
    [J]. Industrial and Engineering Chemistry Research, 2022, 61 (25): : 8673 - 8684
  • [2] Global sensitivity analysis of parameter uncertainty in landscape evolution models
    Skinner, Christopher J.
    Coulthard, Tom J.
    Schwanghart, Wolfgang
    Van De Wiel, Marco J.
    Hancock, Greg
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (12) : 4873 - 4888
  • [3] Critical Parameter Identification of Fuel-Cell Models Using Sensitivity Analysis
    Pant, Lalit M.
    Stewart, Sarah
    Craig, Nathan
    Weber, Adam Z.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (07)
  • [4] Parameter Estimation in Population Balance Models
    Groh, Andreas
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1971 - 1974
  • [5] Parameter identification for electrochemical models of lithium-ion batteries using sensitivity analysis
    Dangwal, Chitra
    Canova, Marcello
    [J]. ASME Letters in Dynamic Systems and Control, 2021, 1 (04):
  • [6] Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model
    Benke, Kurt K.
    Lowell, Kim E.
    Hamilton, Andrew J.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1134 - 1149
  • [7] Online parameter identification of facet growth kinetics in crystal morphology population balance models
    Duerr, Robert
    Palis, Stefan
    Kienle, Achim
    [J]. NEW PARADIGM OF PARTICLE SCIENCE AND TECHNOLOGY, PROCEEDINGS OF THE 7TH WORLD CONGRESS ON PARTICLE TECHNOLOGY, 2015, 102 : 1336 - 1345
  • [8] The sensitivity of flowline models of tidewater glaciers to parameter uncertainty
    Enderlin, E. M.
    Howat, I. M.
    Vieli, A.
    [J]. CRYOSPHERE, 2013, 7 (05): : 1579 - 1590
  • [9] Stormwater Detention System Parameter Sensitivity and Uncertainty Analysis Using SWMM
    Knighton, James
    Lennon, Edward
    Bastidas, Luis
    White, Eric
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2016, 21 (08)
  • [10] Detail or uncertainty? Applying global sensitivity analysis to strike a balance in energy system models✩
    Yliruka, Maria
    Moret, Stefano
    Shah, Nilay
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2023, 177