Probabilistic Representation and Inverse Design of Metamaterials Based on a Deep Generative Model with Semi-Supervised Learning Strategy

被引:359
|
作者
Ma, Wei [1 ]
Cheng, Feng [2 ]
Xu, Yihao [1 ]
Wen, Qinlong [1 ]
Liu, Yongmin [1 ,2 ]
机构
[1] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
deep learning; metamaterials; photonics; NEURAL-NETWORKS; OPTICS;
D O I
10.1002/adma.201901111
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The research of metamaterials has achieved enormous success in the manipulation of light in a prescribed manner using delicately designed subwavelength structures, so-called meta-atoms. Even though modern numerical methods allow for the accurate calculation of the optical response of complex structures, the inverse design of metamaterials, which aims to retrieve the optimal structure according to given requirements, is still a challenging task owing to the nonintuitive and nonunique relationship between physical structures and optical responses. To better unveil this implicit relationship and thus facilitate metamaterial designs, it is proposed to represent metamaterials and model the inverse design problem in a probabilistically generative manner, enabling to elegantly investigate the complex structure-performance relationship in an interpretable way, and solve the one-to-many mapping issue that is intractable in a deterministic model. Moreover, to alleviate the burden of numerical calculations when collecting data, a semisupervised learning strategy is developed that allows the model to utilize unlabeled data in addition to labeled data in an end-to-end training. On a data-driven basis, the proposed deep generative model can serve as a comprehensive and efficient tool that accelerates the design, characterization, and even new discovery in the research domain of metamaterials, and photonics in general.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A Probabilistic Contrastive Framework for Semi-Supervised Learning
    Lin, Huibin
    Zhang, Chun-Yang
    Wang, Shiping
    Guo, Wenzhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8767 - 8779
  • [32] FMixCutMatch for semi-supervised deep learning
    Wei, Xiang
    Wei, Xiaotao
    Kong, Xiangyuan
    Lu, Siyang
    Xing, Weiwei
    Lu, Wei
    Neural Networks, 2021, 133 : 166 - 176
  • [33] Semi-supervised Deep Learning with Memory
    Chen, Yanbei
    Zhu, Xiatian
    Gong, Shaogang
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 275 - 291
  • [34] A Survey on Deep Semi-Supervised Learning
    Yang, Xiangli
    Song, Zixing
    King, Irwin
    Xu, Zenglin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 8934 - 8954
  • [35] FMixCutMatch for semi-supervised deep learning
    Wei, Xiang
    Wei, Xiaotao
    Kong, Xiangyuan
    Lu, Siyang
    Xing, Weiwei
    Lu, Wei
    NEURAL NETWORKS, 2021, 133 : 166 - 176
  • [36] Semi-Supervised Multi-Label Learning from Crowds via Deep Sequential Generative Model
    Shi, Wanli
    Sheng, Victor S.
    Li, Xiang
    Gu, Bin
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1141 - 1149
  • [37] Hierarchical Attention Based Semi-supervised Network Representation Learning
    Liu, Jie
    Deng, Junyi
    Xu, Guanghui
    He, Zhicheng
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT I, 2018, 11108 : 237 - 249
  • [38] Semi-supervised regression based on Representation Learning for fermentation processes
    Liu, Jing
    Wang, Junxian
    Xia, Jianye
    Lv, Fengfeng
    Wu, Dawei
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 191
  • [39] A Flexible Generative Framework for Graph-based Semi-supervised Learning
    Ma, Jiaqi
    Tang, Weijing
    Zhu, Ji
    Mei, Qiaozhu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [40] Similarity Learning Based on Sparse Representation for Semi-Supervised Boosting
    Wang, Qianying
    Lu, Ming
    Li, Junhong
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2018, 17 (02)