Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations

被引:3
|
作者
Brabec, Jiri [1 ]
Yang, Chao [1 ]
Epifanovsky, Evgeny [2 ,3 ]
Krylov, Anna I. [2 ]
Ng, Esmond [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Q Chem Inc, Suite 105, Pleasanton, CA 94588 USA
关键词
coupled-cluster methods; sparsity; sparse correction; quasi-Newton; solvers; ELECTRONIC-STRUCTURE CALCULATIONS; SINGULAR-VALUE DECOMPOSITION; INEXACT NEWTON METHODS; TRIPLES CORRECTION T; PERTURBATION-THEORY; QUANTUM-CHEMISTRY; BRILLOUIN-WIGNER; DOUBLES MODEL; MULTIREFERENCE; INTEGRALS;
D O I
10.1002/jcc.24293
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present an algorithm for reducing the computational work involved in coupled-cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations.
引用
收藏
页码:1059 / 1067
页数:9
相关论文
共 50 条
  • [31] Full solution to the coupled-cluster equations: The H4 model
    Kowalski, K
    Jankowski, K
    CHEMICAL PHYSICS LETTERS, 1998, 290 (1-3) : 180 - 188
  • [32] Solving Coupled Cluster Equations by the Newton Krylov Method
    Yang, Chao
    Brabec, Jiri
    Veis, Libor
    Williams-Young, David B.
    Kowalski, Karol
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [33] Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian
    Piecuch, P
    Wloch, M
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (22):
  • [34] Extension of the method of moments of coupled-cluster equations to excited states: The triples and quadruples corrections to the equation-of-motion coupled-cluster singles and doubles energies
    Kowalski, K
    Piecuch, P
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (17): : 7411 - 7423
  • [35] Local correlation coupled-cluster methods exploiting cluster-in-molecule ansatz and their multi-level generalizations
    Piecuch, Piotr
    Li, Wei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [36] Rank reduced coupled cluster theory. II. Equation-of-motion coupled-cluster singles and doubles
    Hohenstein, Edward G.
    Zhao, Yao
    Parrish, Robert M.
    Martinez, Todd J.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (16):
  • [37] The tensor hypercontracted parametric reduced density matrix algorithm: Coupled-cluster accuracy with O(r4) scaling
    Shenvi, Neil
    van Aggelen, Helen
    Yang, Yang
    Yang, Weitao
    Schwerdtfeger, Christine
    Mazziotti, David
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (05):
  • [38] Extension of the method of moments of coupled-cluster equations to a multireference wave operator formalism
    Kowalski, K
    Piecuch, P
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2001, 547 : 191 - 208
  • [39] BIVARIATIONAL COUPLED-CLUSTER METHOD - EQUATIONS FOR 1ST-ORDER PROPERTY
    BASUGHOSE, K
    PAL, S
    PHYSICAL REVIEW A, 1987, 36 (04): : 1539 - 1543
  • [40] New type of noniterative energy corrections for excited electronic states: Extension of the method of moments of coupled-cluster equations to the equation-of-motion coupled-cluster formalism
    Kowalski, K
    Piecuch, P
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (07): : 2966 - 2978