Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations

被引:3
|
作者
Brabec, Jiri [1 ]
Yang, Chao [1 ]
Epifanovsky, Evgeny [2 ,3 ]
Krylov, Anna I. [2 ]
Ng, Esmond [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Q Chem Inc, Suite 105, Pleasanton, CA 94588 USA
关键词
coupled-cluster methods; sparsity; sparse correction; quasi-Newton; solvers; ELECTRONIC-STRUCTURE CALCULATIONS; SINGULAR-VALUE DECOMPOSITION; INEXACT NEWTON METHODS; TRIPLES CORRECTION T; PERTURBATION-THEORY; QUANTUM-CHEMISTRY; BRILLOUIN-WIGNER; DOUBLES MODEL; MULTIREFERENCE; INTEGRALS;
D O I
10.1002/jcc.24293
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present an algorithm for reducing the computational work involved in coupled-cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations.
引用
收藏
页码:1059 / 1067
页数:9
相关论文
共 50 条