Detecting unstable periodic orbits in Chen's chaotic attractor

被引:35
|
作者
Yu, XH [1 ]
Xia, Y [1 ]
机构
[1] Univ Cent Queensland, Fac Informat & Commun, Rockhampton, Qld 4702, Australia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 08期
关键词
D O I
10.1142/S0218127400001250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This letter further explores the newly discovered Chen's chaotic attractor by means of detecting its unstable periodic orbits. An effective and simple computational detection algorithm based on the sliding mode concept is proposed and used for finding these orbits.
引用
收藏
页码:1987 / 1991
页数:5
相关论文
共 50 条
  • [31] Adaptive stabilization of unstable periodic orbits of chaotic systems
    Tian, YP
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 3195 - 3199
  • [32] Detecting unstable periodic orbits in switched arrival systems
    Tian, YP
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1884 - 1888
  • [33] Towards complete detection of unstable periodic orbits in chaotic systems
    Davidchack, RL
    Lai, YC
    Klebanoff, A
    Bollt, EM
    PHYSICS LETTERS A, 2001, 287 (1-2) : 99 - 104
  • [34] Chaotic scattering, unstable periodic orbits, and fluctuations in quantum transport
    Jensen, R. V.
    CHAOS, 1991, 1 (01) : 101 - 109
  • [35] Systematic computation of the least unstable periodic orbits in chaotic attractors
    Diakonos, FK
    Schmelcher, P
    Biham, O
    PHYSICAL REVIEW LETTERS, 1998, 81 (20) : 4349 - 4352
  • [36] Determination of chaotic dynamical correlations in terms of unstable periodic orbits
    Kobayashi, Miki U.
    Fujisaka, Hirokazu
    PROGRESS OF THEORETICAL PHYSICS, 2006, 115 (04): : 701 - 715
  • [37] CHARACTERIZATION OF UNSTABLE PERIODIC-ORBITS IN CHAOTIC ATTRACTORS AND REPELLERS
    BIHAM, O
    WENZEL, W
    PHYSICAL REVIEW LETTERS, 1989, 63 (08) : 819 - 822
  • [38] Approximating chaotic time series through unstable periodic orbits
    Code 6343, Naval Research Laboratory, Washington, DC 20375, United States
    Phys Rev E., 2 PART A (1615-1621):
  • [39] Approximating chaotic time series through unstable periodic orbits
    Carroll, T.L.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-A):
  • [40] Network analysis of chaotic systems through unstable periodic orbits
    Kobayashi, Miki U.
    Saiki, Yoshitaka
    CHAOS, 2017, 27 (08)