Detecting unstable periodic orbits in Chen's chaotic attractor

被引:35
|
作者
Yu, XH [1 ]
Xia, Y [1 ]
机构
[1] Univ Cent Queensland, Fac Informat & Commun, Rockhampton, Qld 4702, Australia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 08期
关键词
D O I
10.1142/S0218127400001250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This letter further explores the newly discovered Chen's chaotic attractor by means of detecting its unstable periodic orbits. An effective and simple computational detection algorithm based on the sliding mode concept is proposed and used for finding these orbits.
引用
收藏
页码:1987 / 1991
页数:5
相关论文
共 50 条
  • [21] Stabilization of unstable periodic orbits of chaotic maps
    Magnitskii, N.A.
    Computers and Mathematics with Applications, 1997, 34 (2-4): : 369 - 372
  • [22] Detecting the unstable periodic orbits of chaotic nonautonomous systems with an approximate global Poincare map
    Hsiao, YC
    Tung, PC
    PHYSICS LETTERS A, 2001, 290 (1-2) : 59 - 64
  • [23] SYNCHRONIZATION OF CHAOTIC ORBITS - THE INFLUENCE OF UNSTABLE PERIODIC-ORBITS
    GUPTE, N
    AMRITKAR, RE
    PHYSICAL REVIEW E, 1993, 48 (03) : R1620 - R1623
  • [24] Sensitivity of attractor to external influences: approach by unstable periodic orbits
    Kazantsev, E
    CHAOS SOLITONS & FRACTALS, 2001, 12 (11) : 1989 - 2005
  • [25] Detecting unstable periodic orbits from continuous chaotic dynamical systems by dynamical transformation method
    Ma Wen-Cong
    Jin Ning-De
    Gao Zhong-Ke
    ACTA PHYSICA SINICA, 2012, 61 (17)
  • [26] Bifurcation routes to chaos of 2-coupled oscillators and stabilization of unstable periodic orbits embedded in the chaotic attractor
    Endo, T
    Hasegawa, A
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 237 - 240
  • [27] Detecting unstable periodic orbits and unstable quasiperiodic orbits in vibro-impact systems
    Zhang, Yongxiang
    Luo, Guanwei
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 96 : 12 - 21
  • [28] Stabilization of unstable periodic orbits of chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    NONLINEAR DYNAMICS IN THE LIFE AND SOCIAL SCIENCES, 2001, 320 : 33 - 44
  • [29] Prevalence of marginally unstable periodic orbits in chaotic billiards
    Altmann, E. G.
    Friedrich, T.
    Motter, A. E.
    Kantz, H.
    Richter, A.
    PHYSICAL REVIEW E, 2008, 77 (01):
  • [30] UNSTABLE PERIODIC-ORBITS AND THE DIMENSION OF CHAOTIC ATTRACTORS
    GREBOGI, C
    OTT, E
    YORKE, JA
    PHYSICAL REVIEW A, 1987, 36 (07): : 3522 - 3524