FRACTIONAL VARIATIONAL PRINCIPLES WITH DELAY WITHIN CAPUTO DERIVATIVES

被引:43
|
作者
Jarad, Fahd [1 ]
Abdeljawad , Thabet [1 ]
Baleanu, Dumitru [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
fractional variational principles; fractional derivatives; delay; EULER-LAGRANGE EQUATIONS; HAMILTONIAN-FORMULATION; LINEAR VELOCITIES; NUMERICAL SCHEME; DIFFUSION; FORMALISM; MECHANICS;
D O I
10.1016/S0034-4877(10)00010-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the fractional variational principles within Caputo derivatives in the presence of delay derivatives. The corresponding Euler-Lagrange equations are obtained for the case of one dependent variable. A generalization to it dependent variables is obtained. Physical example is analyzed in detail.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [41] On applications of Caputo k-fractional derivatives
    Ghulam Farid
    Naveed Latif
    Matloob Anwar
    Ali Imran
    Muhammad Ozair
    Madeeha Nawaz
    Advances in Difference Equations, 2019
  • [42] On Cauchy problems with Caputo Hadamard fractional derivatives
    Adjabi, Y.
    Jarad, Fahd
    Baleanu, D.
    Abdeljawad, T.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (04) : 661 - 681
  • [43] Caputo and related fractional derivatives in singular systems
    Dassios, Ioannis K.
    Baleanu, Dumitru, I
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 591 - 606
  • [44] To the Theory of Differential Inclusions with Caputo Fractional Derivatives
    M. I. Gomoyunov
    Differential Equations, 2020, 56 : 1387 - 1401
  • [45] On the stable numerical evaluation of Caputo fractional derivatives
    Murio, D. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) : 1539 - 1550
  • [46] A numerical evaluation and regularization of Caputo fractional derivatives
    Li, Ming
    Xiong, X. T.
    Wang, Y. J.
    INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS 2010, 2011, 290
  • [47] To the Theory of Differential Inclusions with Caputo Fractional Derivatives
    Gomoyunov, M., I
    DIFFERENTIAL EQUATIONS, 2020, 56 (11) : 1387 - 1401
  • [48] On applications of Caputo k-fractional derivatives
    Farid, Ghulam
    Latif, Naveed
    Anwar, Matloob
    Imran, Ali
    Ozair, Muhammad
    Nawaz, Madeeha
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [49] Relative controllability for ψ-Caputo fractional delay control system
    Muthuvel, K.
    Kaliraj, K.
    Nisar, Kottakkaran Sooppy
    Vijayakumar, V.
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 16
  • [50] Application of fractional quantum calculus on coupled hybrid differential systems within the sequential Caputo fractional q-derivatives
    Alzabut, Jehad
    Houas, Mohamed
    Abbas, Mohamed I. I.
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)