FRACTIONAL VARIATIONAL PRINCIPLES WITH DELAY WITHIN CAPUTO DERIVATIVES

被引:43
|
作者
Jarad, Fahd [1 ]
Abdeljawad , Thabet [1 ]
Baleanu, Dumitru [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
fractional variational principles; fractional derivatives; delay; EULER-LAGRANGE EQUATIONS; HAMILTONIAN-FORMULATION; LINEAR VELOCITIES; NUMERICAL SCHEME; DIFFUSION; FORMALISM; MECHANICS;
D O I
10.1016/S0034-4877(10)00010-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the fractional variational principles within Caputo derivatives in the presence of delay derivatives. The corresponding Euler-Lagrange equations are obtained for the case of one dependent variable. A generalization to it dependent variables is obtained. Physical example is analyzed in detail.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 50 条
  • [21] Approximations of fractional integrals and Caputo fractional derivatives
    Odibat, Zaid
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 527 - 533
  • [22] On fractional variational principles
    Baleanu, Dumitru
    Muslih, Sami I.
    ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 115 - +
  • [23] Necessary and sufficient optimality conditions for fuzzy fractional variational problems under granular fuzzy Caputo fractional derivatives
    Le, T. T.
    Dang, H. T.
    Tran, T. K.
    Pham, L. B. N.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (02):
  • [24] Nonlinear Langevin time-delay differential equations with generalized Caputo fractional derivatives
    Dien, Nguyen Minh
    FILOMAT, 2023, 37 (19) : 6487 - 6495
  • [25] On Caputo modification of the Hadamard fractional derivatives
    Yusuf Y. Gambo
    Fahd Jarad
    Dumitru Baleanu
    Thabet Abdeljawad
    Advances in Difference Equations, 2014
  • [26] On Caputo modification of the Hadamard fractional derivatives
    Gambo, Yusuf Y.
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [27] A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives
    Baleanu, Dumitru
    Trujillo, Juan I.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (05) : 1111 - 1115
  • [28] ON THE FRACTIONAL NEWTON METHOD WITH CAPUTO DERIVATIVES
    Celik, Emine
    Li, Yulong
    Telyakovskiy, Aleksey S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (04): : 273 - 276
  • [29] ON CAPUTO FRACTIONAL DERIVATIVES VIA CONVEXITY
    Farid, G.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 393 - 399
  • [30] On the generalized fractional derivatives and their Caputo modification
    Jarad, Fahd
    Abdeljawad, Thabet
    Baleanu, Dumitru
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2607 - 2619