The modeling techniques of the second-order correlation function g(2)(τ) for a quantum emitter

被引:0
|
作者
Khaleel, Farooq Abdulghafoor [1 ]
Tawfeeq, Shelan Khasro [1 ]
机构
[1] Univ Baghdad, Inst Laser Postgrad Studies, Dept Engn & Ind Applicat, Baghdad, Iraq
关键词
numerical modeling; photophysics; purcell effects; QuTiP; second-order correlation function; single-photon source; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; SINGLE; EMISSION; DYNAMICS; QUTIP;
D O I
10.1002/jnm.3013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The numerical techniques required to prove the single-photon emission from any type of quantum emitter (QE) after being coupled to any nanostructure are presented in this paper. The Purcell effect modifies the emission characteristics of QEs, such as color centers in nanodiamonds, for example, nitrogen-vacancy (NV) centers, silicon vacancy (SiV) centers, and so forth, or semiconductor quantum dots. Our numerical approach is based on the unique QEs' experimental photophysics parameters and numerical analysis software, which are MATLAB and Quantum Toolbox in Python (QuTiP). Our results show a comparable g((2)) (tau) behavior between our proposed numerical model and the other two experimental results for the QE before and after coupling to a plasmonic waveguide with subwavelength dimensions. Our proposed method is essential to prove the single-photon emission of modeled single-photon source (SPS) in an on-chip polarization-dependent quantum key distribution system (QKD).
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Optimization and second-order derivatives for a Lipschitz function
    Craven, B. D.
    OPTIMIZATION, 2006, 55 (03) : 263 - 268
  • [42] Comparison between the sum of second-order velocity structure functions and the second-order temperature structure function
    Antonia, RA
    Zhu, Y
    Anselmet, F
    OuldRouis, M
    PHYSICS OF FLUIDS, 1996, 8 (11) : 3105 - 3111
  • [43] Computing the transfer function for second-order 2D systems
    Antoniou, GE
    Michael, MT
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3, PROCEEDINGS, 2004, : 237 - 240
  • [44] Characterization techniques for second-order nonlinear optical materials
    Eckardt, RC
    Catella, GC
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS DEVICES, AND APPLICATIONS III, 2004, 5337 : 1 - 10
  • [45] Statistical correlation between first and second-order PMD
    Ibragimov, E
    Shtengel, G
    Suh, S
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (04) : 586 - 590
  • [46] Enhanced second-order treatment of electron pair correlation
    Dykstra, CE
    Davidson, ER
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2000, 78 (04) : 226 - 236
  • [47] Second-order observers for second-order distributed parameter systems in R2
    Nguyen, Tu Duc
    SYSTEMS & CONTROL LETTERS, 2008, 57 (10) : 787 - 795
  • [48] Investigation of a localised second-order Brueckner correlation method
    Hesselmann, A
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (05) : 563 - 572
  • [49] Improving resolution by the second-order correlation of light fields
    Zhang, Pengli
    Gong, Wenlin
    Shen, Xia
    Huang, Dajie
    Han, Shensheng
    OPTICS LETTERS, 2009, 34 (08) : 1222 - 1224
  • [50] Regularized second-order correlation methods for extended systems
    Keller, Elisabeth
    Tsatsoulis, Theodoros
    Reuter, Karsten
    Margraf, Johannes T.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (02):