The modeling techniques of the second-order correlation function g(2)(τ) for a quantum emitter

被引:0
|
作者
Khaleel, Farooq Abdulghafoor [1 ]
Tawfeeq, Shelan Khasro [1 ]
机构
[1] Univ Baghdad, Inst Laser Postgrad Studies, Dept Engn & Ind Applicat, Baghdad, Iraq
关键词
numerical modeling; photophysics; purcell effects; QuTiP; second-order correlation function; single-photon source; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; SINGLE; EMISSION; DYNAMICS; QUTIP;
D O I
10.1002/jnm.3013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The numerical techniques required to prove the single-photon emission from any type of quantum emitter (QE) after being coupled to any nanostructure are presented in this paper. The Purcell effect modifies the emission characteristics of QEs, such as color centers in nanodiamonds, for example, nitrogen-vacancy (NV) centers, silicon vacancy (SiV) centers, and so forth, or semiconductor quantum dots. Our numerical approach is based on the unique QEs' experimental photophysics parameters and numerical analysis software, which are MATLAB and Quantum Toolbox in Python (QuTiP). Our results show a comparable g((2)) (tau) behavior between our proposed numerical model and the other two experimental results for the QE before and after coupling to a plasmonic waveguide with subwavelength dimensions. Our proposed method is essential to prove the single-photon emission of modeled single-photon source (SPS) in an on-chip polarization-dependent quantum key distribution system (QKD).
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Second-order correlation function of a phase fluctuating Bose-Einstein condensate
    Cacciapuoti, L
    Hellweg, D
    Kottke, M
    Schulte, T
    Ertmer, W
    Arlt, JJ
    Sengstock, K
    Santos, L
    Lewenstein, M
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [22] On the second-order correlation function of the characteristic polynomial of a real symmetric Wigner matrix
    Koesters, Holger
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 435 - 447
  • [23] Angular correlation function based on the second-order Kirchhoff approximation and comparison with experiments
    Le, CTC
    Kuga, Y
    Ishimaru, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (05): : 1057 - 1067
  • [24] Second-Order Analysis of Penalty Function
    X. Q. Yang
    Y. Y. Zhou
    Journal of Optimization Theory and Applications, 2010, 146 : 445 - 461
  • [25] Second-Order Analysis of Penalty Function
    Yang, X. Q.
    Zhou, Y. Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (02) : 445 - 461
  • [26] TREATMENT OF CORRELATION EFFECTS IN SECOND-ORDER PROPERTIES
    BARTLETT, RJ
    BELLUM, JC
    BRANDAS, EJ
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1973, : 449 - 462
  • [27] Research on second-order SQL injection techniques
    Scholl of Computer Science and Engineering, Changshu Institute of Technology, Changshu
    215500, China
    不详
    362021, China
    Tongxin Xuebao,
  • [28] SECOND-ORDER QUANTUM ARGUMENT SHIFTS IN Ugld
    Ikeda, Y.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (02) : 1294 - 1303
  • [29] Entanglement in a second-order quantum phase transition
    Vidal, J
    Palacios, G
    Mosseri, R
    PHYSICAL REVIEW A, 2004, 69 (02): : 4
  • [30] Quantum degradation of a second-order phase transition
    Stishov, S. M.
    Petrova, A. E.
    Gavrilkin, S. Yu.
    Klinkova, L. A.
    PHYSICAL REVIEW B, 2015, 91 (14)