Tunable and light-controllable bistable reflected group delay based on nonlinear surface plasmon resonance with graphene

被引:4
|
作者
Xu, Jiao [1 ]
Tang, Jiao [1 ]
Peng, Yuxiang [1 ]
Zheng, Zhiwei [1 ]
Jin, Xiangliang [1 ]
Qian, Shengyou [1 ]
Guo, Jun [2 ]
Jiang, Leyong [1 ]
Xiang, Yuanjiang [3 ]
机构
[1] Hunan Normal Univ, Sch Phys & Elect, Changsha 410081, Hunan, Peoples R China
[2] Jiangsu Normal Univ, Sch Phys & Elect Engn, Jiangsu Key Lab Adv Laser Mat & Devices, Xuzhou 221116, Jiangsu, Peoples R China
[3] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Group delay; Graphene; Nonlinear surface plasmon; Otto configuration; INDUCED TRANSPARENCY; OPTICAL BISTABILITY; SLOW; PROPAGATION; PHASE;
D O I
10.1016/j.rinp.2019.102579
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we have shown that tunable nonlinear group delay of reflected light beam at terahertz frequencies can be achieved by a modified Otto configuration with the insertion of monolayer graphene and nonlinear substrate. This large nonlinear reflected group delay originates from the excitation of surface plasmon resonance at the interface of two dielectrics with graphene. Graphene sheet with unique optical properties can enhance the surface plasmon resonance and modulate bistable behavior of the reflected group delay by suitably adjusting the Fermi energy of the graphene and the relaxation time. Moreover, the large negative and positive of reflected group delay is sensitive to the thicknesses of the air layer. We believe these intriguing phenomena are promising for some potential applications in graphene-based optical delay devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Role of Graphene in Surface Plasmon Resonance-Based Biosensors
    Tene, Talia
    Bellucci, Stefano
    Arias, Fabian Arias
    Almendariz, Luis Santiago Carrera
    Huilcapi, Ana Gabriela Flores
    Gomez, Cristian Vacacela
    SENSORS, 2024, 24 (14)
  • [22] Light-controllable hybrid aligning layer based on LIPSS on sapphire surface and PVCN-F film
    Gvozdovskyy, I.
    Bratova, D.
    Kazantseva, Z.
    Malyuta, S.
    Lytvyn, P.
    Schwarz, S.
    Hellmann, R.
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 387
  • [23] Highly sensitive graphene biosensors based on surface plasmon resonance
    Wu, L.
    Chu, H. S.
    Koh, W. S.
    Li, E. P.
    OPTICS EXPRESS, 2010, 18 (14): : 14395 - 14400
  • [24] Graphene based surface plasmon resonance gas sensor for terahertz
    Triranjita Srivastava
    Amrita Purkayastha
    Rajan Jha
    Optical and Quantum Electronics, 2016, 48
  • [25] Surface plasmon resonance biosensor based on graphene and grating excitation
    Tong, Kai
    Wang, Yunxuan
    Wang, Fucheng
    Sun, Jiaru
    Wu, Xiaogang
    APPLIED OPTICS, 2019, 58 (07) : 1824 - 1829
  • [26] Graphene based surface plasmon resonance gas sensor for terahertz
    Srivastava, Triranjita
    Purkayastha, Amrita
    Jha, Rajan
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (06)
  • [27] Tunable Goos-Hanchen Shift Surface Plasmon Resonance Sensor Based on Graphene-hBN Heterostructure
    Liu, Zihao
    Lu, Fangyuan
    Jiang, Leyong
    Lin, Wei
    Zheng, Zhiwei
    BIOSENSORS-BASEL, 2021, 11 (06):
  • [28] Graphene/Graphene Oxide-Based Ultrasensitive Surface Plasmon Resonance Biosensor
    Meshginqalam, Bahar
    Ahmadi, Mohammad Taghi
    Ismail, Razali
    Sabatyan, Arash
    PLASMONICS, 2017, 12 (06) : 1991 - 1997
  • [29] Graphene/Graphene Oxide-Based Ultrasensitive Surface Plasmon Resonance Biosensor
    Bahar Meshginqalam
    Mohammad Taghi Ahmadi
    Razali Ismail
    Arash Sabatyan
    Plasmonics, 2017, 12 : 1991 - 1997
  • [30] Giant and controllable Goos-Hanchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure
    You, Qi
    Shan, Youxian
    Gan, Shuaiwen
    Zhao, Yuting
    Dai, Xiaoyu
    Xiang, Yuanjiang
    OPTICAL MATERIALS EXPRESS, 2018, 8 (10): : 3036 - 3048