Stacking of Two-Dimensional Materials to Large-Area Heterostructures by Wafer Bonding

被引:0
|
作者
Quellmalz, Arne [1 ]
Sawallich, Simon [2 ,3 ]
Prechtl, Maximilian [4 ]
Hartwig, Oliver [4 ]
Luo, Siwei [4 ]
Wagner, Stefan [5 ]
Duesberg, Georg S. [4 ]
Lemme, Max C. [5 ]
Niklaus, Frank [1 ]
Gylfason, Kristinn B. [1 ]
机构
[1] KTH Royal Inst Technol, Micro & Nanosyst, Malvinas Vag 10, S-10044 Stockholm, Sweden
[2] Protemics GmbH, Otto Blumenthal Str 25, D-52074 Aachen, Germany
[3] Rhein Westfal TH Aachen, Chair Elect Devices, Otto Blumenthal Str 2, D-52074 Aachen, Germany
[4] Univ Bundeswehr Munchen, Inst Phys, Werner Heisenberg Weg 39, D-85577 Neubiberg, Germany
[5] AMO GmbH, Adv Microelect Ctr Aachen AMICA, Otto Blumenthal Str 25, D-52074 Aachen, Germany
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
PHOTONICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The integration of 2D materials for photonic applications is not compatible with high-volume manufacturing. We report a generic methodology that uses only readily available semiconductor equipment and experimentally demonstrate the stacking of graphene and molybdenum disulfide (MoS2). (C) 2021 The Author(s)
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Large-area integration of two-dimensional materials and their heterostructures by wafer bonding
    Arne Quellmalz
    Xiaojing Wang
    Simon Sawallich
    Burkay Uzlu
    Martin Otto
    Stefan Wagner
    Zhenxing Wang
    Maximilian Prechtl
    Oliver Hartwig
    Siwei Luo
    Georg S. Duesberg
    Max C. Lemme
    Kristinn B. Gylfason
    Niclas Roxhed
    Göran Stemme
    Frank Niklaus
    Nature Communications, 12
  • [2] Large-area integration of two-dimensional materials and their heterostructures by wafer bonding
    Quellmalz, Arne
    Wang, Xiaojing
    Sawallich, Simon
    Uzlu, Burkay
    Otto, Martin
    Wagner, Stefan
    Wang, Zhenxing
    Prechtl, Maximilian
    Hartwig, Oliver
    Luo, Siwei
    Duesberg, Georg S.
    Lemme, Max C.
    Gylfason, Kristinn B.
    Roxhed, Niclas
    Stemme, Goran
    Niklaus, Frank
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Study of a Radical Doping Method for Large-area Two-dimensional Materials
    Kim, Kyongnam
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2019, 28 (03): : 41 - 45
  • [4] Large-Area Mechanically-Exfoliated Two-Dimensional Materials on Arbitrary Substrates
    Sahu, Satyam
    Haider, Golam
    Rodriguez, Alvaro
    Plsek, Jan
    Mergl, Martin
    Kalbac, Martin
    Frank, Otakar
    Velicky, Matej
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (12)
  • [5] Exfoliation and Analysis of Large-area, Air-Sensitive Two-Dimensional Materials
    Thompson, Josh P.
    Doha, M. Hasan
    Murphy, Peter
    Hu, Jin
    Churchill, Hugh O. H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (143):
  • [6] Fabrication of Large-Area Two-Dimensional Colloidal Crystals
    Zhang, Jian-Tao
    Wang, Luling
    Lamont, Daniel N.
    Velankar, Sachin S.
    Asher, Sanford A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) : 6117 - 6120
  • [7] Fast adaptive focusing confocal Raman microscopy for large-area two-dimensional materials
    Li, Rongji
    Xu, Demin
    Su, Yunhao
    Qiu, Lirong
    Zhao, Weiqian
    Cui, Han
    TALANTA, 2024, 276
  • [8] Large-area two-dimensional mesoscale quasi-crystals
    Wang, X
    Ng, CY
    Tam, WY
    Chan, CT
    Sheng, P
    ADVANCED MATERIALS, 2003, 15 (18) : 1526 - +
  • [9] Large-area plasmon enhanced two-dimensional MoS2
    Lee, Min-Gon
    Yoo, SeokJae
    Kim, TaeHyung
    Park, Q-Han
    NANOSCALE, 2017, 9 (42) : 16244 - 16248
  • [10] Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
    Kang, Kibum
    Lee, Kan-Heng
    Han, Yimo
    Gao, Hui
    Xie, Saien
    Muller, David A.
    Park, Jiwoong
    NATURE, 2017, 550 (7675) : 229 - 233