Sparse Dirichlet optimal control problems

被引:0
|
作者
Mateos, Mariano [1 ]
机构
[1] Univ Oviedo, Dept Matemat, Campus Gijon, Gijon 33203, Spain
关键词
Optimal control; Boundary control; Sparse controls; Finite element approximation; BANG CONTROL-PROBLEMS; ERROR ANALYSIS; BOUNDARY CONTROL; APPROXIMATION;
D O I
10.1007/s10589-021-00290-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we analyze optimal control problems governed by an elliptic partial differential equation, in which the control acts as the Dirichlet data. Box constraints for the controls are imposed and the cost functional involves the state and possibly a sparsity-promoting term, but not a Tikhonov regularization term. Two different discretizations are investigated: the variational approach and a full discrete approach. For the latter, we use continuous piecewise linear elements to discretize the control space and numerical integration of the sparsity-promoting term. It turns out that the best way to discretize the state equation is to use the Carstensen quasi-interpolant of the boundary data, and a new discrete normal derivative of the adjoint state must be introduced to deal with this. Error estimates, optimization procedures and examples are provided.
引用
收藏
页码:271 / 300
页数:30
相关论文
共 50 条
  • [31] NEW TIME DOMAIN DECOMPOSITION METHODS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS I: DIRICHLET--NEUMANN AND NEUMANN--DIRICHLET ALGORITHMS
    Gander, Martin j.
    Lu, Liu-di
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 2048 - 2070
  • [32] On optimal and balanced sparse matrix partitioning problems
    Grandjean, Anael
    Langguth, Johannes
    Ucar, Bora
    2012 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2012, : 257 - 265
  • [33] Dirichlet control of elliptic state constrained problems
    Mateos, Mariano
    Neitzel, Ira
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (03) : 825 - 853
  • [34] Infinite Horizon Sparse Optimal Control
    Kalise, Dante
    Kunisch, Karl
    Rao, Zhiping
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (02) : 481 - 517
  • [35] Dirichlet control of elliptic state constrained problems
    Mariano Mateos
    Ira Neitzel
    Computational Optimization and Applications, 2016, 63 : 825 - 853
  • [36] Optimal Control of TABS by Sparse MPC
    Shiraishi, Yasuyuki
    Nagahara, Masaaki
    Saelens, Dirk
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 1735 - 1741
  • [37] Sparse Optimal Control for Fractional Diffusion
    Otarola, Enrique
    Salgado, Abner J.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 95 - 110
  • [38] Infinite Horizon Sparse Optimal Control
    Dante Kalise
    Karl Kunisch
    Zhiping Rao
    Journal of Optimization Theory and Applications, 2017, 172 : 481 - 517
  • [39] Analysis and computational methods of Dirichlet boundary optimal control problems for 2D Boussinesq equations
    Lee, HC
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (1-3) : 255 - 275
  • [40] Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition
    Gozzi, Fausto
    Russo, Francesco
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (11) : 1530 - 1562