Sparse Dirichlet optimal control problems

被引:0
|
作者
Mateos, Mariano [1 ]
机构
[1] Univ Oviedo, Dept Matemat, Campus Gijon, Gijon 33203, Spain
关键词
Optimal control; Boundary control; Sparse controls; Finite element approximation; BANG CONTROL-PROBLEMS; ERROR ANALYSIS; BOUNDARY CONTROL; APPROXIMATION;
D O I
10.1007/s10589-021-00290-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we analyze optimal control problems governed by an elliptic partial differential equation, in which the control acts as the Dirichlet data. Box constraints for the controls are imposed and the cost functional involves the state and possibly a sparsity-promoting term, but not a Tikhonov regularization term. Two different discretizations are investigated: the variational approach and a full discrete approach. For the latter, we use continuous piecewise linear elements to discretize the control space and numerical integration of the sparsity-promoting term. It turns out that the best way to discretize the state equation is to use the Carstensen quasi-interpolant of the boundary data, and a new discrete normal derivative of the adjoint state must be introduced to deal with this. Error estimates, optimization procedures and examples are provided.
引用
收藏
页码:271 / 300
页数:30
相关论文
共 50 条
  • [11] Nested Sparse Successive Galerkin Approximation for Nonlinear Optimal Control Problems
    Wang, Zhong
    Li, Yan
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 511 - 516
  • [12] Numerical solution of optimal control problems with sparse SQP-methods
    Wimmer, Georg
    Steinmetz, Thorsten
    Clemens, Markus
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 996 - +
  • [13] SPARSE JACOBIAN UPDATES IN THE COLLOCATION METHOD FOR OPTIMAL-CONTROL PROBLEMS
    BETTS, JT
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1990, 13 (03) : 409 - 415
  • [14] Optimal L1-Control in Coefficients for Dirichlet Elliptic Problems: H-Optimal Solutions
    Kogut, Peter I.
    Leugering, Guenter
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (01): : 31 - 53
  • [15] Optimal L1-Control in Coefficients for Dirichlet Elliptic Problems: W-Optimal Solutions
    Peter I. Kogut
    Guenter Leugering
    Journal of Optimization Theory and Applications, 2011, 150 : 205 - 232
  • [16] Optimal L1-Control in Coefficients for Dirichlet Elliptic Problems: W-Optimal Solutions
    Kogut, Peter I.
    Leugering, Guenter
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (02) : 205 - 232
  • [17] Time optimal problems with Dirichlet boundary controls
    Arada, N
    Raymond, JP
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (06) : 1549 - 1570
  • [18] Optimal transportation problems with tree Dirichlet regions
    Buttazzo, G
    Oudet, E
    Stepanov, E
    VARIATIONAL METHODS FOR DISCONTINUOUS STRUCTURES, 2002, 51 : 41 - 65
  • [19] The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions
    Corekli, Cagnur
    AIMS MATHEMATICS, 2022, 7 (04): : 6711 - 6742
  • [20] Finite element approximation and computations of optimal dirichlet boundary control problems for the Boussinesq equations
    Lee, HC
    Kim, S
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (04) : 681 - 715