Sparse Dirichlet optimal control problems

被引:0
|
作者
Mateos, Mariano [1 ]
机构
[1] Univ Oviedo, Dept Matemat, Campus Gijon, Gijon 33203, Spain
关键词
Optimal control; Boundary control; Sparse controls; Finite element approximation; BANG CONTROL-PROBLEMS; ERROR ANALYSIS; BOUNDARY CONTROL; APPROXIMATION;
D O I
10.1007/s10589-021-00290-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we analyze optimal control problems governed by an elliptic partial differential equation, in which the control acts as the Dirichlet data. Box constraints for the controls are imposed and the cost functional involves the state and possibly a sparsity-promoting term, but not a Tikhonov regularization term. Two different discretizations are investigated: the variational approach and a full discrete approach. For the latter, we use continuous piecewise linear elements to discretize the control space and numerical integration of the sparsity-promoting term. It turns out that the best way to discretize the state equation is to use the Carstensen quasi-interpolant of the boundary data, and a new discrete normal derivative of the adjoint state must be introduced to deal with this. Error estimates, optimization procedures and examples are provided.
引用
收藏
页码:271 / 300
页数:30
相关论文
共 50 条
  • [1] Sparse Dirichlet optimal control problems
    Mariano Mateos
    Computational Optimization and Applications, 2021, 80 : 271 - 300
  • [2] PENALIZATION OF DIRICHLET OPTIMAL CONTROL PROBLEMS
    Casas, Eduardo
    Mateos, Mariano
    Raymond, Jean-Pierre
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (04): : 782 - 809
  • [3] ON THE REGULARITY OF THE SOLUTIONS OF DIRICHLET OPTIMAL CONTROL PROBLEMS IN POLYGONAL DOMAINS
    Apel, Thomas
    Mateos, Mariano
    Pfefferer, Johannes
    Roesch, Arnd
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (06) : 3620 - 3641
  • [4] Energy corrected FEM for optimal Dirichlet boundary control problems
    Lorenz John
    Piotr Swierczynski
    Barbara Wohlmuth
    Numerische Mathematik, 2018, 139 : 913 - 938
  • [5] Finite element approximation of elliptic dirichlet optimal control problems
    Vexler, B.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (7-8) : 957 - 973
  • [6] Energy corrected FEM for optimal Dirichlet boundary control problems
    John, Lorenz
    Swierczynski, Piotr
    Wohlmuth, Barbara
    NUMERISCHE MATHEMATIK, 2018, 139 (04) : 913 - 938
  • [7] Homogenization of Dirichlet optimal control problems with exact partial controllability constraints
    Kogut, P. I.
    Leugering, G.
    ASYMPTOTIC ANALYSIS, 2008, 57 (3-4) : 229 - 249
  • [8] Sparse optimal control problems with intermediate constraints: Necessary conditions
    Kumar, Yogesh
    Srikant, Sukumar
    Chatterjee, Debasish
    Nagaraha, Masaaki
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (02): : 369 - 385
  • [9] SPARSE GRID APPROXIMATION OF THE RICCATI OPERATOR FOR CLOSED LOOP PARABOLIC CONTROL PROBLEMS WITH DIRICHLET BOUNDARY CONTROL
    Harbrecht, Helmut
    Kalmykov, Ilja
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (06) : 4538 - 4562
  • [10] ON SHAPE STABILITY OF DIRICHLET OPTIMAL CONTROL PROBLEMS IN COEFFICIENTS FOR NONLINEAR ELLIPTIC EQUATIONS
    D'Apice, Ciro
    De Maio, Umberto
    Kogut, OL'Ga P.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (7-8) : 689 - 720