An Application of Fuzzy C-Regression Models to Characteristic Point Detection in Biomedical Signals

被引:1
|
作者
Momot, Alina [1 ]
Momot, Michal [2 ]
Leski, Jacek M. [2 ,3 ]
机构
[1] Silesian Tech Univ, Inst Comp Sci, Akad 16, PL-44100 Gliwice, Poland
[2] Inst Med Technol & Equipment, PL-41800 Zabrze, Poland
[3] Silesian Tech Univ, Inst Elect, PL-44100 Gliwice, Poland
来源
MAN-MACHINE INTERACTIONS 3 | 2014年 / 242卷
关键词
fuzzy clustering; fuzzy c-regresion models; biomedical signals;
D O I
10.1007/978-3-319-02309-0_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces a new fuzzy c-regression models with various loss functions. The algorithm consists in solving a sequence of weighted quadratic minimization problems where the weights used for the next iteration depend on values of models residuals for the current iteration. Simulations on real-life ECG signals are realized to evaluate the performance of the fuzzy clustering method.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 50 条
  • [41] Fuzzy c-regression model with a new cluster validity criterion
    Kung, CC
    Lin, CC
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1499 - 1504
  • [42] Hybrid System Identification by Incremental Fuzzy C-regression Clustering
    Blazic, Saso
    Skrjanc, Igor
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [43] A fuzzy C-regression model algorithm using a new PSO algorithm
    Taieb, Adel
    Soltani, Moez
    Chaari, Abdelkader
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (01) : 115 - 133
  • [44] Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion
    Kung, C. C.
    Su, J. Y.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (05): : 1255 - 1265
  • [45] A new cluster validity criterion for fuzzy C-regression model and its application to T-S fuzzy model identification
    Kung, CC
    Lin, CC
    2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 1673 - 1678
  • [46] T-S Fuzzy Affine Linear Modeling Algorithm by Possibilistic c-Regression Models Clustering Algorithm
    Kung, Chung-Chun
    Ku, Hong-Chi
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 1242 - 1247
  • [47] A novel cluster validity criterion for fuzzy C-regression model clustering algorithm
    Kung, CC
    Hung, JC
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 1368 - 1373
  • [48] Using Fuzzy c-Regression Approach to Obtain Stress Functions for OWA Operators
    Tezel, Baris Tekin
    Nasiboglu, Resmiye
    Nasibov, Efendi
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 528 - 531
  • [49] Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models
    Moez Soltani
    Achraf Jabeur Telmoudi
    Yassine Ben Belgacem
    Abdelkader Chaari
    Neural Computing and Applications, 2020, 32 : 11361 - 11371
  • [50] Identification of pH neutralization process based on a modified adaptive fuzzy c-regression algorithm
    Telmoudi, Achraf Jabeur
    Soltani, Moez
    Chaari, Abdelkader
    2018 7TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2018, : 414 - 417