T-S Fuzzy Affine Linear Modeling Algorithm by Possibilistic c-Regression Models Clustering Algorithm

被引:0
|
作者
Kung, Chung-Chun [1 ]
Ku, Hong-Chi [1 ]
机构
[1] Tatung Univ, Dept Elect Engn, Taipei 104, Taiwan
关键词
Takagi-Sugeno (T-S) fuzzy model; affine linear; possibilistic c-regression models (PCRM); cluster validity criterion; IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a Takagi-Sugeno (T-S) fuzzy affine linear modeling algorithm by the possibilistic c-regression models (PCRM) clustering algorithm. We apply the PCRM to partition the given input-output data into hyper-plane-shaped clusters (regression models). We choose the suitable number of cluster by the cluster validity criterion and then to construct the T-S fuzzy affine linear model. A simulation example is provided to demonstrate the effectiveness of the T-S fuzzy affine linear modeling algorithm.
引用
收藏
页码:1242 / 1247
页数:6
相关论文
共 50 条
  • [1] Possibilistic c-Regression Models Clustering Algorithm
    Kung, Chung-Chun
    Ku, Hong-Chi
    Su, Jui-Yiao
    IEEE INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE 2013), 2013, : 297 - 302
  • [2] A novel T-S fuzzy particle filtering algorithm based on fuzzy C-regression clustering
    Wang, Xiao-li
    Li, Liang-qun
    Xie, Wei-xin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 117 : 81 - 95
  • [3] T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm
    Li, Chaoshun
    Zhou, Jianzhong
    Xiang, Xiuqiao
    Li, Qingqing
    An, Xueli
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (4-5) : 646 - 653
  • [4] Robust possibilistic c-regression models algorithm
    Soltani, Moez
    Telmoudi, Achraf Jabeur
    Chaouech, Lotfi
    Chaari, Abdelkader
    2017 4TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2017, : 466 - 470
  • [5] A modified clustering algorithm for fuzzy modeling using fuzzy C-regression model
    Zhao, Ni
    Sun, Fu-Chun
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 140 - +
  • [6] A study of cluster validity criteria for the fuzzy c-regression models clustering algorithm
    Kung, Chung-Chun
    Su, Jui-Yiao
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 1898 - 1903
  • [7] Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion
    Kung, C. C.
    Su, J. Y.
    IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (05): : 1255 - 1265
  • [8] Sparse Fuzzy c-regression Models with Application to T-S Fuzzy Systems Identification
    Luo, Minnan
    Sun, Fuchun
    Liu, Huaping
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 1571 - 1577
  • [9] A novel cluster validity criterion for fuzzy C-regression model clustering algorithm
    Kung, CC
    Hung, JC
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 1368 - 1373
  • [10] A New Algorithm for T-S Fuzzy Modeling Based on Hierarchical Fuzzy-Clustering
    Wang Heng
    Jia Minping
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 1261 - 1264