An Atmospheric Data-Driven Q-Band Satellite Channel Model With Feature Selection

被引:9
|
作者
Bai, Lu [1 ]
Xu, Qian [2 ]
Huang, Ziwei [3 ]
Wu, Shangbin [4 ]
Ventouras, Spiros [5 ]
Goussetis, George [6 ]
Cheng, Xiang [3 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[2] Jilin Univ, Sch Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[3] Peking Univ, State Key Lab Adv Opt Commun Syst & Networks, Dept Elect, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[4] Samsung Res & Dev Inst UK, Staines Upon Thames, England
[5] RAL Space, STFC Rutherford Appleton Lab, Oxford OX11 0QX, England
[6] Heriot Watt Univ, Inst Sensors Signals & Syst, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
中国国家自然科学基金;
关键词
Atmospheric measurements; Atmospheric modeling; Satellites; Attenuation; Channel models; Attenuation measurement; Satellite broadcasting; Data driven; feature selection; key atmospheric parameters; Q-band; satellite communication channel attenuation; LOW ELEVATION ANGLE; PROPAGATION MEASUREMENTS; PERFORMANCE ANALYSIS; TREE ATTENUATION; RADIO CHANNEL; KU; UHF; KA; STATISTICS; MULTIPATH;
D O I
10.1109/TAP.2021.3137285
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a novel atmospheric data-driven Q-band satellite channel model using two artificial neural networks, i.e., multilayer perceptron and long short-term memory (LSTM), to estimate real-time channel attenuation at Q-band via a set of atmospheric parameters. Seven atmospheric parameters for modeling satellite channel attenuation are selected by the least absolute shrinkage and selection operator (LASSO) algorithm from 14 commonly used atmospheric parameters. Simulation results demonstrate that the multilayer perceptron-based atmospheric data-driven Q-band satellite channel model via those seven atmospheric parameters is more accurate and less complex than that via the 14 atmospheric parameters. Meanwhile, the accuracy performance of multilayer perceptron- and LSTM-based atmospheric data-driven Q-band satellite channel models, such as absolute errors and mean-squared errors (MSEs), is discussed and analyzed. The complexity of multilayer perceptron and LSTM in this model, such as training time, loading time, and estimation time, is also investigated. It can be seen that the estimated channel attenuation can well align with the measured channel attenuation.
引用
收藏
页码:4002 / 4013
页数:12
相关论文
共 50 条
  • [21] Supervised data-driven approach for hyperspectral band selection using quantization
    Paul, Arati
    Chaki, Nabendu
    [J]. GEOCARTO INTERNATIONAL, 2022, 37 (08) : 2312 - 2322
  • [22] Data-driven model for solar irradiation based on satellite observations
    Bilionis, Ilias
    Constantinescu, Emil M.
    Anitescu, Mihai
    [J]. SOLAR ENERGY, 2014, 110 : 22 - 38
  • [23] Fade Slope Analysis with Q-band Alphasat Satellite Measurements in Madrid
    Pimienta-del-Valle, Domingo
    Garcia-del-Pino, Pedro
    Manuel Riera, Jose
    [J]. 2020 14TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2020), 2020,
  • [24] Integrated Theory- and Data-driven Feature Selection in Gene Expression Data Analysis
    Raghu, Vineet K.
    Ge, Xiaoyu
    Chrysanthis, Panos K.
    Benos, Panayiotis V.
    [J]. 2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 1525 - 1532
  • [25] Site Diversity Experiment in Q-Band Satellite Communications in Slovenia and Hungary
    Kelmendi, Arsim
    Csurgai-Horvath, Laszlo
    Svigelj, Ales
    Mohorcic, Mihael
    Javornik, Tomaz
    Hrovat, Andrej
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2023, 22 (08): : 1967 - 1971
  • [26] Data-driven Site Selection
    Schuh, Günther
    Gützlaff, Andreas
    Adlon, Tobias
    Schupp, Steffen
    Endrikat, Morten
    Schlosser, Tino X.
    [J]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2022, 117 (05): : 258 - 263
  • [27] Data-Driven Beams Selection for Beamspace Channel Estimation in Massive MIMO
    Bychkov, Roman
    Osinsky, Alexander
    Ivanov, Andrey
    Yarotsky, Dmitry
    [J]. 2021 IEEE 93RD VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-SPRING), 2021,
  • [28] The impact of domain-driven and data-driven feature selection on the inverse design of nanoparticle catalysts
    Li, Sichao
    Ting, Jonathan Y.C.
    Barnard, Amanda S.
    [J]. Journal of Computational Science, 2022, 65
  • [29] The impact of domain-driven and data-driven feature selection on the inverse design of nanoparticle catalysts
    Li, Sichao
    Ting, Jonathan Y. C.
    Barnard, Amanda S.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 65
  • [30] Data-driven approach to satellite selection in multi-constellation GNSS receivers
    Soininen, Tero
    Syrjarinne, Paula
    Ali-Loytty, Simo
    Schmid, Christoph
    [J]. 2018 8TH INTERNATIONAL CONFERENCE ON LOCALIZATION AND GNSS (ICL-GNSS), 2018,