Solving Dynamic Multi-objective Optimization Problems Using Incremental Support Vector Machine

被引:0
|
作者
Hu, Weizhen [1 ]
Jiang, Min [1 ]
Gao, Xing [2 ]
Tan, Kay Chen [3 ]
Cheung, Yiu-ming [4 ]
机构
[1] Xiamen Univ, Dept Cognit Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Software Sch, Xiamen, Fujian, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic Multi-objective Optimization Problems; Incremental Support Vector Machine; Pareto Optimal Set; ADAPTATION; ALGORITHMS;
D O I
10.1109/cec.2019.8790005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The main feature of the Dynamic Multi-objective Optimization Problems (DMOPs) is that optimization objective functions will change with times or environments. One of the promising approaches for solving the DMOPs is reusing the obtained Pareto optimal set (POS) to train prediction models via machine learning approaches. In this paper, we train an Incremental Support Vector Machine (ISVM) classifier with the past POS, and then the solutions of the DMOP we want to solve at the next moment are filtered through the trained ISVM classifier. A high-quality initial population will be generated by the ISVM classifier, and a variety of different types of population-based dynamic multi-objective optimization algorithms can benefit from the population. To verify this idea, we incorporate the proposed approach into three evolutionary algorithms, the multi-objective particle swarm optimization(MOPSO), Nondominated Sorting Genetic Algorithm II (NSGA-II), and the Regularity Model-based multi-objective estimation of distribution algorithm(RE-MEDA). We employ experimentS to test these algorithms, and experimental results show the effectiveness.
引用
收藏
页码:2794 / 2799
页数:6
相关论文
共 50 条
  • [21] Application of Particle Swarm Optimization Based on Support Vector Machine in Multi-objective Structure Optimization
    Chang, Chenyang
    Zhai, Jingmei
    Xia, Qinxiang
    Cai, Bing
    [J]. ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION III, PTS 1 AND 2, 2012, 201-202 : 283 - +
  • [22] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Khalid, Asmaa M. M.
    Hamza, Hanaa M. M.
    Mirjalili, Seyedali
    Hosny, Khaid M. M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23): : 17319 - 17347
  • [23] MOCOVIDOA: a novel multi-objective coronavirus disease optimization algorithm for solving multi-objective optimization problems
    Asmaa M. Khalid
    Hanaa M. Hamza
    Seyedali Mirjalili
    Khaid M. Hosny
    [J]. Neural Computing and Applications, 2023, 35 : 17319 - 17347
  • [24] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Xiao, Jin-ke
    Li, Wei-min
    Xiao, Xin-rong
    Cheng-zhong, L., V
    [J]. APPLIED INTELLIGENCE, 2017, 46 (03) : 739 - 755
  • [25] A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems
    Jin-ke Xiao
    Wei-min Li
    Xin-rong Xiao
    Cheng-zhong LV
    [J]. Applied Intelligence, 2017, 46 : 739 - 755
  • [26] Multi-objective optimization for support vector regression parameters
    Wang, Xiaogang
    Tong, Zhen
    Wang, Fuli
    [J]. Information, Management and Algorithms, Vol II, 2007, : 194 - 196
  • [27] Constructing dynamic optimization test problems using the multi-objective optimization concept
    Jin, YC
    Sendhoff, B
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, 2004, 3005 : 525 - 536
  • [28] Evolving dynamic multi-objective optimization problems with objective replacement
    Guan, SU
    Chen, Q
    Mo, WT
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2005, 23 (03) : 267 - 293
  • [29] Evolving Dynamic Multi-Objective Optimization Problems with Objective Replacement
    SHENG-UEI GUAN
    QIAN CHEN
    WENTING MO
    [J]. Artificial Intelligence Review, 2005, 23 : 267 - 293
  • [30] Solving dynamic multi-objective problems with a new prediction-based optimization algorithm
    Zhang, Qingyang
    Jiang, Shouyong
    Yang, Shengxiang
    Song, Hui
    [J]. PLOS ONE, 2021, 16 (08):