WGI-Net: A weighted group integration network for RGB-D salient object detection

被引:10
|
作者
Ge, Yanliang [1 ]
Zhang, Cong [1 ]
Wang, Kang [1 ]
Liu, Ziqi [1 ]
Bi, Hongbo [1 ]
机构
[1] Northeast Petr Univ, Sch Elect Informat Engn, Daqing 163000, Peoples R China
关键词
weighted group; depth information; RGB-D information; salient object detection; deep learning; IMAGE; SEGMENTATION; FUSION; MODEL;
D O I
10.1007/s41095-020-0200-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Salient object detection is used as a pre-process in many computer vision tasks (such as salient object segmentation, video salient object detection, etc.). When performing salient object detection, depth information can provide clues to the location of target objects, so effective fusion of RGB and depth feature information is important. In this paper, we propose a new feature information aggregation approach, weighted group integration (WGI), to effectively integrate RGB and depth feature information. We use a dual-branch structure to slice the input RGB image and depth map separately and then merge the results separately by concatenation. As grouped features may lose global information about the target object, we also make use of the idea of residual learning, taking the features captured by the original fusion method as supplementary information to ensure both accuracy and completeness of the fused information. Experiments on five datasets show that our model performs better than typical existing approaches for four evaluation metrics.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 50 条
  • [1] WGI-Net: A weighted group integration network for RGB-D salient object detection
    Yanliang Ge
    Cong Zhang
    Kang Wang
    Ziqi Liu
    Hongbo Bi
    [J]. Computational Visual Media, 2021, 7 : 115 - 125
  • [2] WGI-Net: A weighted group integration network for RGB-D salient object detection
    Yanliang Ge
    Cong Zhang
    Kang Wang
    Ziqi Liu
    Hongbo Bi
    [J]. Computational Visual Media, 2021, 7 (01) : 115 - 125
  • [3] GroupTransNet: Group transformer network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    [J]. NEUROCOMPUTING, 2024, 594
  • [4] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [5] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    [J]. NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [6] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [7] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [8] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [9] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559
  • [10] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780