A principal component regression approach for estimating ventricular repolarization duration variability

被引:0
|
作者
Tarvainen, Mika P.
Laitinen, Tomi
Lyyra-Laitinen, Tiina
Niskanen, Juha-Pekka
Karjalainen, Pasi A.
机构
[1] Univ Kuopio, Dept Phys, FIN-70211 Kuopio, Finland
[2] Kuopio Univ Hosp, Dept Clin Physiol & Nucl Med, FIN-70211 Kuopio, Finland
关键词
D O I
10.1155/2007/58358
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ventricular repolarization duration (VRD) is affected by heart rate and autonomic control, and thus VRD varies in time in a similar way as heart rate. VRD variability is commonly assessed by determining the time differences between successive R- and T-waves, that is, RT intervals. Traditional methods for RT interval detection necessitate the detection of either T-wave apexes or offsets. In this paper, we propose a principal-component-regression-(PCR-) based method for estimating RT variability. The main benefit of the method is that it does not necessitate T-wave detection. The proposed method is compared with traditional RT interval measures, and as a result, it is observed to estimate RT variability accurately and to be less sensitive to noise than the traditional methods. As a specific application, the method is applied to exercise electrocardiogram (ECG) recordings. Copyright (c) 2007 Mika P. Tarvainen et al.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Principal Component Regression Approach for Estimating Ventricular Repolarization Duration Variability
    Mika P. Tarvainen
    Tomi Laitinen
    Tiina Lyyra-Laitinen
    Juha-Pekka Niskanen
    Pasi A. Karjalainen
    EURASIP Journal on Advances in Signal Processing, 2007
  • [2] A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics
    Lipponen, J. A.
    Tarvainen, M. P.
    Laitinen, T.
    Lyyra-Laitinen, T.
    Karjalainen, P. A.
    4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 385 - 388
  • [3] A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics
    Lipponen, Jukka Antero
    Tarvainen, Mika P.
    Laitinen, Tomi
    Lyyra-Laitinen, Tiina
    Karjalainen, Pasi A.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (05) : 1062 - 1069
  • [4] Principal component regression approach for QT variability estimation
    Karjalainen, P. A.
    Tarvainen, M. P.
    Laitinen, T.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 1145 - 1147
  • [5] A principal component regression strategy for estimating motion
    Estrela, Vania V.
    Da Silva Bassani, M. H.
    de Assis, J. T.
    PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2007, : 224 - +
  • [6] Estimating Motion with Principal Component Regression Strategies
    do Carmo, Felipe P.
    Estrela, Vania Vieira
    de Assis, Joaquim Teixeira
    2009 IEEE INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2009), 2009, : 461 - 466
  • [7] Study of ventricular repolarization duration variability and dependence of RTm/RR
    Pan, Jiapu
    Zhu, Yujie
    Pan, Cuiqin
    Zhou, Liming
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2000, 17 (01): : 71 - 74
  • [8] SPONTANEOUS BEAT-TO-BEAT VARIABILITY OF THE VENTRICULAR REPOLARIZATION DURATION
    NOLLO, G
    SPERANZA, G
    GRASSO, R
    BONAMINI, R
    MANGIARDI, L
    ANTOLINI, R
    JOURNAL OF ELECTROCARDIOLOGY, 1992, 25 (01) : 9 - 17
  • [9] Relation between ventricular gradient and complexity of ventricular repolarization evaluated by principal component analysis
    Savelieva, I
    Ghuran, A
    Malik, M
    EUROPEAN HEART JOURNAL, 2001, 22 : 438 - 438
  • [10] A model-based approach to multivariate principal component regression: Selecting principal components and estimating standard errors for unstandardized regression coefficients
    Gu, Fei
    Cheung, Mike W. -L.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2023, 76 (03): : 605 - 622