Principal component regression approach for QT variability estimation

被引:0
|
作者
Karjalainen, P. A. [1 ]
Tarvainen, M. P. [1 ]
Laitinen, T. [1 ]
机构
[1] Univ Kuopio, Dept Appl Phys, FIN-70211 Kuopio, Finland
关键词
D O I
10.1109/IEMBS.2005.1616624
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
New algorithm for quantifying the variation in the QT interval of ECG recording is presented. The algorithm is based on the Principal Component Regression where the eigenvectors of the data correlation matrix are calculated. The eigenvectors are then used for calculation of the principal components and one of them is selected to represent the information about T wave variation. The algorithm is tested using high speed ECG recording.
引用
收藏
页码:1145 / 1147
页数:3
相关论文
共 50 条
  • [1] A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics
    Lipponen, J. A.
    Tarvainen, M. P.
    Laitinen, T.
    Lyyra-Laitinen, T.
    Karjalainen, P. A.
    [J]. 4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 385 - 388
  • [2] A Principal Component Regression Approach for Estimation of Ventricular Repolarization Characteristics
    Lipponen, Jukka Antero
    Tarvainen, Mika P.
    Laitinen, Tomi
    Lyyra-Laitinen, Tiina
    Karjalainen, Pasi A.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (05) : 1062 - 1069
  • [3] A Principal Component Regression Approach for Estimating Ventricular Repolarization Duration Variability
    Mika P. Tarvainen
    Tomi Laitinen
    Tiina Lyyra-Laitinen
    Juha-Pekka Niskanen
    Pasi A. Karjalainen
    [J]. EURASIP Journal on Advances in Signal Processing, 2007
  • [4] A principal component regression approach for estimating ventricular repolarization duration variability
    Tarvainen, Mika P.
    Laitinen, Tomi
    Lyyra-Laitinen, Tiina
    Niskanen, Juha-Pekka
    Karjalainen, Pasi A.
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [5] Hybrid principal component regression estimation in linear regression
    Rong, Jian-Ying
    Liu, Xu-Qing
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (06): : 3758 - 3776
  • [6] Noise sensitivity of a principal component regression based RT interval variability estimation method
    Tarvainen, Mika P.
    Niskanen, Juha-Pekka
    Karjalainen, Pasi A.
    Laitinen, Torni
    Lyyra-Laitinen, Tjina
    [J]. 2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 1270 - +
  • [7] A principal component approach to dynamic regression models
    delMoral, MJ
    Valderrama, MJ
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1997, 13 (02) : 237 - 244
  • [8] Project cost estimation using principal component regression
    Chan, Swee Lean
    Park, Moonseo
    [J]. CONSTRUCTION MANAGEMENT AND ECONOMICS, 2005, 23 (03) : 295 - 304
  • [9] PRINCIPAL COMPONENT ESTIMATION FOR GENERALIZED LINEAR-REGRESSION
    MARX, BD
    SMITH, EP
    [J]. BIOMETRIKA, 1990, 77 (01) : 23 - 31
  • [10] Principal Component Regression by Principal Component Selection
    Lee, Hosung
    Park, Yun Mi
    Lee, Seokho
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (02) : 173 - 180