Estimating Motion with Principal Component Regression Strategies

被引:0
|
作者
do Carmo, Felipe P. [1 ]
Estrela, Vania Vieira [1 ]
de Assis, Joaquim Teixeira [1 ]
机构
[1] State Univ Rio de Janeiro UERJ, Polytech Inst Rio de Janeiro IPRJ, BR-28601970 Nova Friburgo, RJ, Brazil
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, two simple principal component regression methods for estimating the optical flow between frames of video sequences according to a pel-recursive manner are introduced. These are easy alternatives to dealing with mixtures of motion vectors in addition to the lack of prior information on spatial-temporal statistics (although they are supposed to be normal in a local sense). The 21) motion vector estimation approaches take into consideration simple image properties and are used to harmonize regularized least square estimates. Their main advantage is that no knowledge of the noise distribution is necessary, although there is a underlying assumption of localized smoothness. Preliminary experiments indicate that this approach provides robust estimates of the optical flow.
引用
收藏
页码:461 / 466
页数:6
相关论文
共 50 条
  • [1] A principal component regression strategy for estimating motion
    Estrela, Vania V.
    Da Silva Bassani, M. H.
    de Assis, J. T.
    PROCEEDINGS OF THE SEVENTH IASTED INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING, AND IMAGE PROCESSING, 2007, : 224 - +
  • [2] A Principal Component Regression Method for Estimating Low Flow Index
    Saeid Eslamian
    Mehdi Ghasemizadeh
    Monireh Biabanaki
    Mansoor Talebizadeh
    Water Resources Management, 2010, 24 : 2553 - 2566
  • [3] A Principal Component Regression Method for Estimating Low Flow Index
    Eslamian, Saeid
    Ghasemizadeh, Mehdi
    Biabanaki, Monireh
    Talebizadeh, Mansoor
    WATER RESOURCES MANAGEMENT, 2010, 24 (11) : 2553 - 2566
  • [4] Principal Component Regression by Principal Component Selection
    Lee, Hosung
    Park, Yun Mi
    Lee, Seokho
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (02) : 173 - 180
  • [5] Principal Component Regression, Ridge Regression and Ridge Principal Component Regression in Spectroscopy Calibration
    Vigneau, E.
    Devaux, M. F.
    Qannari, E. M.
    Robert, P.
    Journal of Chemometrics, 11 (03):
  • [6] Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
    Vigneau, E
    Devaux, MF
    Qannari, EM
    Robert, P
    JOURNAL OF CHEMOMETRICS, 1997, 11 (03) : 239 - 249
  • [7] A principal component regression approach for estimating ventricular repolarization duration variability
    Tarvainen, Mika P.
    Laitinen, Tomi
    Lyyra-Laitinen, Tiina
    Niskanen, Juha-Pekka
    Karjalainen, Pasi A.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [8] A Principal Component Regression Approach for Estimating Ventricular Repolarization Duration Variability
    Mika P. Tarvainen
    Tomi Laitinen
    Tiina Lyyra-Laitinen
    Juha-Pekka Niskanen
    Pasi A. Karjalainen
    EURASIP Journal on Advances in Signal Processing, 2007
  • [9] MOTION SYNTHESIS FOR AFFECTIVE AGENTS USING PIECEWISE PRINCIPAL COMPONENT REGRESSION
    Xu, Jianfeng
    Myodo, Emi
    Sakazawa, Shigeyuki
    2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2013), 2013,
  • [10] Forecast comparison of principal component regression and principal covariate regression
    Heij, Christiaan
    Groenen, Patrick J. F.
    van Dijk, Dick
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (07) : 3612 - 3625