On Higher Order Voronoi Diagrams of Line Segments

被引:0
|
作者
Papadopoulou, Evanthia [1 ]
Zavershynskyi, Maksym [1 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, Lugano, Switzerland
来源
关键词
computational geometry; Voronoi diagrams; line segments; higher order Voronoi diagrams; PLANE; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze structural properties of the order-k Voronoi diagram of line segments, which surprisingly has not received any attention in the computational geometry literature. We show that order-k Voronoi regions of line segments may be disconnected; in fact a single order-k Voronoi region may consist of Omega(n) disjoint faces. Nevertheless, the structural complexity of the order-k Voronoi diagram of non-intersecting segments remains O(k(n -k)) similarly to points. For intersecting line segments the structural complexity remains O(k(n -k)) for k >= n/2.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [31] An Optimal Algorithm for Higher-Order Voronoi Diagrams in the Plane: The Usefulness of Nondeterminism
    Chan, Timothy M.
    Cheng, Pingan
    Zheng, Da Wei
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 4451 - 4463
  • [32] Semidynamic construction of higher-order Voronoi diagrams and its randomized analysis
    Boissonnat, Jean-Daniel
    Devillers, Olivier
    Teillaud, Monique
    Algorithmica (New York), 1993, 9 (04): : 329 - 356
  • [33] A Randomized Divide and Conquer Algorithm for Higher-Order Abstract Voronoi Diagrams
    Bohler, Cecilia
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8889 : 27 - 37
  • [34] A Randomized Divide and Conquer Algorithm for Higher-Order Abstract Voronoi Diagrams
    Bohler, Cecilia
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    ALGORITHMS AND COMPUTATION, ISAAC 2014, 2014, 8889 : 27 - 37
  • [35] Farthest line segment Voronoi diagrams
    Aurenhammer, F.
    Drysdale, R. L. S.
    Krasser, H.
    INFORMATION PROCESSING LETTERS, 2006, 100 (06) : 220 - 225
  • [36] OUTPUT SENSITIVE AND DYNAMIC CONSTRUCTIONS OF HIGHER-ORDER VORONOI DIAGRAMS AND LEVELS IN ARRANGEMENTS
    MULMULEY, K
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1993, 47 (03) : 437 - 458
  • [37] Topology-oriented incremental computation of Voronoi diagrams of circular arcs and straight-line segments
    Held, Martin
    Huber, Stefan
    COMPUTER-AIDED DESIGN, 2009, 41 (05) : 327 - 338
  • [38] On Voronoi Diagrams in the Planar Line Space and Their Generalizations
    Schmitt, Dominique
    Vyatkina, Kira
    TRANSACTIONS ON COMPUTATIONAL SCIENCE XX: SPECIAL ISSUE ON VORONOI DIAGRAMS AND THEIR APPLICATIONS, 2013, 8110 : 170 - 180
  • [39] An interpolant based on line segment Voronoi diagrams
    Hiyoshi, H
    Sugihara, K
    DISCRETE AND COMPUTATIONAL GEOMETRY, 2000, 1763 : 119 - 128
  • [40] Line Voronoi Diagrams Using Elliptical Distances
    Gabdulkhakova, Aysylu
    Langer, Maximilian
    Langer, Bernhard W.
    Kropatsch, Walter G.
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2018, 2018, 11004 : 258 - 267