On Higher Order Voronoi Diagrams of Line Segments

被引:0
|
作者
Papadopoulou, Evanthia [1 ]
Zavershynskyi, Maksym [1 ]
机构
[1] Univ Svizzera Italiana, Fac Informat, Lugano, Switzerland
来源
关键词
computational geometry; Voronoi diagrams; line segments; higher order Voronoi diagrams; PLANE; SET;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyze structural properties of the order-k Voronoi diagram of line segments, which surprisingly has not received any attention in the computational geometry literature. We show that order-k Voronoi regions of line segments may be disconnected; in fact a single order-k Voronoi region may consist of Omega(n) disjoint faces. Nevertheless, the structural complexity of the order-k Voronoi diagram of non-intersecting segments remains O(k(n -k)) similarly to points. For intersecting line segments the structural complexity remains O(k(n -k)) for k >= n/2.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [21] An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
    Cecilia Bohler
    Rolf Klein
    Chih-Hung Liu
    Algorithmica, 2019, 81 : 2317 - 2345
  • [22] Higher-Order Geodesic Voronoi Diagrams in a Polygonal Domain with Holes
    Liu, Chih-Hung
    Lee, D. T.
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1633 - 1645
  • [23] Computing generalized higher-order Voronoi diagrams on triangulated surfaces
    Fort, Marta
    Antoni Sellares, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) : 235 - 250
  • [24] An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
    Bohler, Cecilia
    Klein, Rolf
    Liu, Chih-Hung
    ALGORITHMICA, 2019, 81 (06) : 2317 - 2345
  • [25] Tight bound and improved algorithm for farthest-color Voronoi diagrams of line segments
    Bae, Sang Won
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (08): : 779 - 788
  • [26] Computing Voronoi Diagrams of Line Segments in RK in O(n log n) Time
    Holcomb, Jeffrey W.
    Cobb, Jorge A.
    ADVANCES IN VISUAL COMPUTING, PT II (ISVC 2015), 2015, 9475 : 755 - 766
  • [27] VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments
    Held, M
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 18 (02): : 95 - 123
  • [29] A randomized divide and conquer algorithm for higher-order abstract Voronoi diagrams
    Bohler, Cecilia
    Liu, Chih-Hung
    Papadopoulou, Evanthia
    Zavershynskyi, Maksym
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 59 : 26 - 38
  • [30] A SEMIDYNAMIC CONSTRUCTION OF HIGHER-ORDER VORONOI DIAGRAMS AND ITS RANDOMIZED ANALYSIS
    BOISSONNAT, JD
    DEVILLERS, O
    TEILLAUD, M
    ALGORITHMICA, 1993, 9 (04) : 329 - 356