Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes

被引:80
|
作者
Jiang, J. [1 ]
Saito, R.
Sato, K.
Park, J. S.
Samsonidze, Ge. G.
Jorio, A.
Dresselhaus, G.
Dresselhaus, M. S.
机构
[1] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[2] CREST JST, Sendai, Miyagi 9808578, Japan
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[5] MIT, Francis Bitter Natl Magnet Lab, Cambridge, MA 02139 USA
[6] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevB.75.035405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the framework of the tight-binding model, we have developed exciton-photon and exciton-phonon matrix elements for single-wall carbon nanotubes. The formulas for first-order resonance and double-resonance Raman processes are discussed in detail. The lowest-energy excitonic state possesses an especially large exciton-photon matrix element compared to other excitonic states and continuum band states because of its localized wave function with no node. Unlike the free-particle picture, the photon matrix element in the exciton picture shows an inverse diameter dependence but no tube type or chirality dependences. As a result, the optical absorption intensity shows a strong diameter dependence but no tube type or chirality dependences. Moreover, the continuum band edge can be determined from the wave function or exciton-photon matrix element. For the radial breathing mode (RBM) and G-band modes, the phonon matrix elements in the exciton and free-particle pictures are almost the same. As a result, the intensity for the Kataura plots for the RBM or G-band modes by the exciton and free-particle pictures show similar family patterns. However, the excitonic effect has greatly increased the diameter dependence and magnitude of the intensities for the RBM and G band by enhancing the diameter dependence and magnitude of the photon matrix element. Therefore, excitons have to be considered in order to explain the strong diameter dependence of the Raman signal observed experimentally.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Exciton-phonon coupling in individual GaAs nanowires studied using resonant Raman spectroscopy
    Brewster, Megan
    Schimek, Oliver
    Reich, Stephanie
    Gradecak, Silvija
    PHYSICAL REVIEW B, 2009, 80 (20):
  • [32] Intrinsic Exciton-Phonon Coupling and Tuning in ZnTe Nanowires Probed by Resonant Raman Scattering
    Yi, Yingyan
    Marmon, Jason K.
    Chen, Yuanping
    Zhang, Fan
    Sheng, Tao
    Wijewarnasuriya, Priyalal S.
    Zhang, Haitao
    Zhang, Yong
    PHYSICAL REVIEW APPLIED, 2020, 13 (01)
  • [33] 13 nm Exciton Size in (6,5) Single-Wall Carbon Nanotubes
    Mann, Christoph
    Hertel, Tobias
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (12): : 2276 - 2280
  • [34] Strong exciton-phonon interaction assisting simultaneous enhancement of photoluminescence and Raman scattering from suspended carbon nanotubes
    Sumikura, Hisashi
    Takaki, Hiroshi
    Maki, Hideyuki
    Notomi, Masaya
    PHYSICAL REVIEW B, 2020, 102 (12)
  • [35] Phonon-phonon interactions in single-wall carbon nanotubes
    Hepplestone, S. P.
    Srivastava, G. P.
    PHYSICAL REVIEW B, 2006, 74 (16):
  • [36] Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes
    Alvarez, L
    Righi, A
    Guillard, T
    Rols, S
    Anglaret, E
    Laplaze, D
    Sauvajol, JL
    CHEMICAL PHYSICS LETTERS, 2000, 316 (3-4) : 186 - 190
  • [37] Disorder induced triple resonant Raman phenomena in single-wall carbon nanotubes
    Kürti, J
    Zólyomi, V
    Grüneis, A
    Kuzmany, H
    STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2002, 633 : 347 - 351
  • [38] Exciton energy calculations for single wall carbon nanotubes
    Saito, R.
    Sato, K.
    Araujo, P. T.
    Jorio, A.
    Dresselhaus, G.
    Dresselhaus, M. S.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (11-12): : 2581 - 2585
  • [39] Photoluminescence intensity of single-wall carbon nanotubes
    Oyama, Y
    Saito, R
    Sato, K
    Jiang, J
    Samsonidze, GG
    Grüneis, A
    Miyauchi, Y
    Maruyama, S
    Jorio, A
    Dresselhaus, G
    Dresselhaus, MS
    CARBON, 2006, 44 (05) : 873 - 879
  • [40] Resonant-Raman study of Frohlich exciton-phonon interaction in WS2 nanostructures
    Barman, Prahalad Kanti
    Sarma, Prasad V.
    Shaijumon, Manikoth M.
    Kini, Rajeev N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (04): : 743 - 748