Exciton transport in molecular organic semiconductors boosted by transient quantum delocalization

被引:53
|
作者
Giannini, Samuele [1 ,2 ,6 ]
Peng, Wei-Tao [1 ,2 ]
Cupellini, Lorenzo [3 ]
Padula, Daniele [4 ]
Carof, Antoine [5 ]
Blumberger, Jochen [1 ,2 ]
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] UCL, Thomas Young Ctr, London WC1E 6BT, England
[3] Univ Pisa, Dipartimento Chim & Chim Ind, Via G Moruzzi 13, I-56124 Pisa, Italy
[4] Univ Siena, Dipartimento Biotecnol Chim & Farm, Via A Moro 2, I-53100 Siena, Italy
[5] Univ Lorraine, CNRS, Lab Phys & Chim Theor, UMR 7019, BP 239, F-54506 Vandoeuvre Les Nancy 54506, France
[6] Univ Mons, Lab Chem Novel Mat, Pl Parc 20, B-7000 Mons, Belgium
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
ENERGY-TRANSFER; NONADIABATIC DYNAMICS; CRYSTAL-STRUCTURE; CHARGE-TRANSPORT; DIFFUSION; ANTHRACENE; LIGHT; ABSORPTION; ANISOTROPY; COUPLINGS;
D O I
10.1038/s41467-022-30308-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, an efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrodinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials. Improving exciton diffusion in molecular materials is an important goal in materials science. Here, Giannini et al. show that transient quantum delocalization of the excitonic wavefunction underpins high diffusivity leading to a set of design rules.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Magnetic field modulated exciton generation in organic semiconductors: An intermolecular quantum correlated effect
    Ding, Baofu
    Yao, Yao
    Sun, Xiaoyu
    Gao, Xindong
    Xie, Zuoti
    Sun, Zhengyi
    Wang, Zijun
    Ding, Xunmin
    Wu, Yizheng
    Jin, Xiaofeng
    Choy, Wallace C. H.
    Wu, Chang-Qin
    Hou, Xiaoyuan
    PHYSICAL REVIEW B, 2010, 82 (20)
  • [42] QUANTUM TRANSPORT IN SEMICONDUCTORS
    NICHOLAS, RJ
    CONTEMPORARY PHYSICS, 1980, 21 (05) : 501 - 521
  • [43] QUANTUM TRANSPORT IN SEMICONDUCTORS
    STRADLING, RA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1979, 11 (1-3) : 221 - 224
  • [44] Exciton Delocalization and Energy Transport Mechanisms in R-Phycoerythrin
    Womick, Jordan M.
    Liu, Haoming
    Moran, Andrew M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (12): : 2471 - 2482
  • [45] Coherent Exciton Delocalization in Strongly Coupled Quantum Dot Arrays
    Crisp, Ryan W.
    Schrauben, Joel N.
    Beard, Matthew C.
    Luther, Joseph M.
    Johnson, Justin C.
    NANO LETTERS, 2013, 13 (10) : 4862 - 4869
  • [46] Charge Trapping versus Exciton Delocalization in CdSe Quantum Dots
    Grenland, Jamie J.
    Maddux, Cassandra J. A.
    Kelley, David F.
    Kelley, Anne Myers
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (20): : 5113 - 5118
  • [47] Exciton binding and delocalization in T-shaped quantum wires
    Bryant, GW
    Julienne, PS
    Band, YB
    PHYSICA B, 1996, 227 (1-4): : 390 - 392
  • [48] Revealing exciton transport in atomically thin semiconductors
    Liu, Fengjiang
    Chen, Kai
    Yan, Wei
    Tang, Weiwei
    Zhang, Hao
    Blaikie, Richard J.
    Chen, Yu-Hui
    Ding, Boyang
    Qiu, Min
    PHYSICAL REVIEW B, 2024, 109 (20)
  • [49] Exciton diffusion in organic semiconductors: precision and pitfalls
    Riley, Drew B.
    Meredith, Paul
    Armin, Ardalan
    NANOSCALE, 2024, 16 (38) : 17761 - 17777
  • [50] Measuring and controlling exciton diffusion in organic semiconductors
    Samuel, Ifor D. W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234