Optimal convergence rate of the explicit Euler method for convection-diffusion equations

被引:2
|
作者
Zhang, Qifeng [1 ]
Zhang, Jiyuan [1 ]
Sun, Zhi-zhong [2 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
关键词
Convection-diffusion equation; Explicit Euler method; Optimal convergence rate;
D O I
10.1016/j.aml.2022.108048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Revisiting the explicit Euler method of the classical diffusion equation, a new difference scheme with the optimal convergence rate four is achieved under the condition of the specific step-ratio r = 1/6. Applying the corrected idea to the convection-diffusion equation, a new corrected numerical scheme is obtained which owns a similar fourth-order optimal convergence rate. Rigorous numerical analysis is carried out by the maximum principle. Compared with the standard difference schemes, the new proposed difference schemes have obvious advantage in accuracy. Extensive numerical examples with and without exact solutions confirm our theoretical results. Moreover, extending our technique to nonlinear problems such as the Fisher equation and viscous Burgers' equation is available. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A New Numerical Method for Solving Convection-Diffusion Equations
    Ding, Hengfei
    Zhang, Yuxin
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 463 - 470
  • [32] An adaptive SUPG method for evolutionary convection-diffusion equations
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 273 : 219 - 237
  • [33] DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Abdellatif Agouzal (Laboratoire de Mathematiques Appliquees
    Journal of Computational Mathematics, 2000, (06) : 639 - 644
  • [34] Discontinuous finite element method for convection-diffusion equations
    Agouzal, A
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (06) : 639 - 644
  • [35] Lattice Boltzmann Method for Stochastic Convection-Diffusion Equations
    Zhao, Weifeng
    Huang, Juntao
    Yong, Wen-An
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 536 - 563
  • [36] A Hermite Finite Element Method for Convection-diffusion Equations
    Ruas, V.
    Trales, P.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2213 - 2216
  • [37] An operator splitting method for nonlinear convection-diffusion equations
    Karlsen, KH
    Risebro, NH
    NUMERISCHE MATHEMATIK, 1997, 77 (03) : 365 - 382
  • [38] APPROXIMATE CONVECTION-DIFFUSION EQUATIONS
    Perumal, Muthiah
    Raju, Kittur G. Ranga
    JOURNAL OF HYDROLOGIC ENGINEERING, 1999, 4 (02) : 160 - 164
  • [39] Implicit characteristic Galerkin method for convection-diffusion equations
    Li, XK
    Wu, WH
    Zienkiewicz, OC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 47 (10) : 1689 - 1708
  • [40] An operator splitting method for nonlinear convection-diffusion equations
    Kenneth Hvistendahl Karlsen
    Nils Henrik Risebro
    Numerische Mathematik, 1997, 77 : 365 - 382