Optimal convergence rate of the explicit Euler method for convection-diffusion equations

被引:2
|
作者
Zhang, Qifeng [1 ]
Zhang, Jiyuan [1 ]
Sun, Zhi-zhong [2 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
关键词
Convection-diffusion equation; Explicit Euler method; Optimal convergence rate;
D O I
10.1016/j.aml.2022.108048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Revisiting the explicit Euler method of the classical diffusion equation, a new difference scheme with the optimal convergence rate four is achieved under the condition of the specific step-ratio r = 1/6. Applying the corrected idea to the convection-diffusion equation, a new corrected numerical scheme is obtained which owns a similar fourth-order optimal convergence rate. Rigorous numerical analysis is carried out by the maximum principle. Compared with the standard difference schemes, the new proposed difference schemes have obvious advantage in accuracy. Extensive numerical examples with and without exact solutions confirm our theoretical results. Moreover, extending our technique to nonlinear problems such as the Fisher equation and viscous Burgers' equation is available. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条