Optimal convergence rate of the explicit Euler method for convection-diffusion equations

被引:2
|
作者
Zhang, Qifeng [1 ]
Zhang, Jiyuan [1 ]
Sun, Zhi-zhong [2 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
关键词
Convection-diffusion equation; Explicit Euler method; Optimal convergence rate;
D O I
10.1016/j.aml.2022.108048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Revisiting the explicit Euler method of the classical diffusion equation, a new difference scheme with the optimal convergence rate four is achieved under the condition of the specific step-ratio r = 1/6. Applying the corrected idea to the convection-diffusion equation, a new corrected numerical scheme is obtained which owns a similar fourth-order optimal convergence rate. Rigorous numerical analysis is carried out by the maximum principle. Compared with the standard difference schemes, the new proposed difference schemes have obvious advantage in accuracy. Extensive numerical examples with and without exact solutions confirm our theoretical results. Moreover, extending our technique to nonlinear problems such as the Fisher equation and viscous Burgers' equation is available. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optimal convergence rate of the explicit Euler method for convection-diffusion equations II: High dimensional cases
    Zhang, Qifeng
    Zhang, Jiyuan
    Sun, Zhi-zhong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4377 - 4402
  • [2] An Explicit Method for Convection-Diffusion Equations
    Ruas, Vitoriano
    Brasil, Antonio, Jr.
    Trales, Paulo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (01) : 65 - 91
  • [3] An explicit method for convection-diffusion equations
    Vitoriano Ruas
    Antonio Brasil
    Paulo Trales
    Japan Journal of Industrial and Applied Mathematics, 2009, 26
  • [4] Explicit Finite Difference Method For Convection-Diffusion Equations
    Feng, Qinghua
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 1094 - 1097
  • [5] Convergence analysis of a multigrid method for convection-diffusion equations
    Reusken, A
    NUMERISCHE MATHEMATIK, 2002, 91 (02) : 323 - 349
  • [6] Fast explicit operator splitting method for convection-diffusion equations
    Chertock, Alina
    Kurganov, Alexander
    Petrova, Guergana
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (03) : 309 - 332
  • [7] Application of the alternating group explicit method for convection-diffusion equations
    Feng, Qinghua
    Zheng, Bin
    WSEAS Transactions on Mathematics, 2009, 8 (03) : 138 - 147
  • [8] An Efficient Explicit/Implicit Domain Decomposition Method for Convection-Diffusion Equations
    Zhu, Liyong
    Yuan, Guangwei
    Du, Qiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (04) : 852 - 873
  • [9] Parallel Alternating Group Explicit Iterative Method For Convection-Diffusion Equations
    Feng, Qinghua
    Zheng, Bin
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 383 - +
  • [10] Convergence analysis of a LDG method for tempered fractional convection-diffusion equations
    Ahmadinia, Mahdi
    Safari, Zeinab
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (01): : 59 - 78