Analysis of haemodynamic factors involved in carotid atherosclerosis using computational fluid dynamics

被引:25
|
作者
Martin, D. [1 ]
Zaman, A. [2 ]
Hacker, J. [4 ]
Mendelow, D. [3 ]
Birchall, D. [1 ]
机构
[1] Newcastle Reg Neurosci Ctr, Dept Neuroradiol, Newcastle Upon Tyne, Tyne & Wear, England
[2] Newcastle Reg Cardiothorac Ctr, Newcastle Upon Tyne, Tyne & Wear, England
[3] Newcastle Reg Neurosci Ctr, Dept Neurosurg, Newcastle Upon Tyne, Tyne & Wear, England
[4] Arup Fluid Dynam Grp, London, England
来源
关键词
VASCULAR ENDOTHELIAL-CELLS; WALL SHEAR-STRESS; NITRIC-OXIDE SYNTHASE; BLOOD-FLOW; IN-VIVO; SUPEROXIDE-DISMUTASE; ARTERY BIFURCATION; MECHANICAL-STRESS; GENE-EXPRESSION; YOUNG-ADULTS;
D O I
10.1259/bjr/59367266
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Atherosclerosis presents a massive healthcare burden in both the developing and developed world. There is mounting evidence relating to the involvement of haemodynamic factors in the pathogenesis of this process. This article aims to review the current understandings that have developed in this area, and to present a demonstrative case study obtained using state of the art computational fluid dynamics (CFD) methodology to model and analyse haemodynamic factors within the atheromatous carotid artery bifurcation.
引用
收藏
页码:S33 / S38
页数:6
相关论文
共 50 条
  • [41] ENVIRONMENT ANALYSIS NEAR A HIGHWAY USING COMPUTATIONAL FLUID DYNAMICS
    Zhuang, Xinwei
    Wang, Xiuling
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 9, 2015,
  • [42] IMAGE-BASED COMPUTATIONAL FLUID DYNAMICS IN A CAROTID ARTERY
    Gori, F.
    Boghi, A.
    IMECE2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 2, 2010, : 123 - 128
  • [43] Examination of hemodynamic environments of carotid stenosis with computational fluid dynamics
    Fukuda, Shunichi
    Shimogonya, Yuji
    FASEB JOURNAL, 2019, 33
  • [44] Numerical analysis of vortex dynamics in hyperbolic funnels using computational fluid dynamics
    Donepudi, Teja
    van de Griend, Maarten
    Agostinho, Luewton L. F.
    de Kroon, Esther J.
    Klymenko, Roman
    Pecnik, Rene
    Woisetschlaeger, Jakob
    Fuchs, Elmar C.
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [45] Hemodynamic Changes in the Carotid Artery after Infusion of Normal Saline Using Computational Fluid Dynamics
    Lee, Ui Yun
    Kim, Chul In
    Chung, Gyung Ho
    Jung, Jinmu
    Kwak, Hyo Sung
    DIAGNOSTICS, 2020, 10 (07)
  • [46] USING COMPUTATIONAL FLUID DYNAMICS TO DESIGN AND OPTIMIZE A NOVEL ENDOVASCULAR PROCEDURE FOR CAROTID STENOSIS REPAIR
    Yeh, Victoria
    Figueroa, C. Alberto
    Les, Andrea
    Ho, Jacqueline P.
    Dalman, Ronald
    Taylor, Charles A.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE 2008, PTS A AND B, 2009, : 593 - 594
  • [47] Computational fluid dynamics analysis of tandem carotid artery stenoses: Investigation of neurological complications after carotid artery stenting
    Kambayashi, Yukinao
    Takao, Hiroyuki
    Shinohara, Kouichi
    Suzuki, Takashi
    Takayama, Sho
    Fujimura, Soichiro
    Masuda, Shunsuke
    Watanabe, Mituyoshi
    Suzuki, Tomoaki
    Dahmani, Chihebeddine
    Ishibashi, Toshihiro
    Yamamoto, Makoto
    Murayama, Yuichi
    TECHNOLOGY AND HEALTH CARE, 2016, 24 (05) : 673 - 679
  • [48] Distribution of wall shear stress in carotid plaques using magnetic resonance imaging and computational fluid dynamics analysis: a preliminary study
    Jing Li-na
    Gao Pei-yi
    Lin Yan
    Sui Bin-bin
    Qin Hai-qiang
    Ma Li
    Xue Jing
    CHINESE MEDICAL JOURNAL, 2011, 124 (10) : 1465 - 1469
  • [49] Analysis of Optimized Wind Turbine Failure Using Computational Fluid Dynamics
    Yadav, Shatjit
    Ramachandran, M.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 1788 - 1793
  • [50] Consequence analysis of aqueous ammonia spill using computational fluid dynamics
    Galeev, A. D.
    Salin, A. A.
    Ponikarov, S. I.
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2013, 26 (04) : 628 - 638