Analysis of haemodynamic factors involved in carotid atherosclerosis using computational fluid dynamics

被引:25
|
作者
Martin, D. [1 ]
Zaman, A. [2 ]
Hacker, J. [4 ]
Mendelow, D. [3 ]
Birchall, D. [1 ]
机构
[1] Newcastle Reg Neurosci Ctr, Dept Neuroradiol, Newcastle Upon Tyne, Tyne & Wear, England
[2] Newcastle Reg Cardiothorac Ctr, Newcastle Upon Tyne, Tyne & Wear, England
[3] Newcastle Reg Neurosci Ctr, Dept Neurosurg, Newcastle Upon Tyne, Tyne & Wear, England
[4] Arup Fluid Dynam Grp, London, England
来源
关键词
VASCULAR ENDOTHELIAL-CELLS; WALL SHEAR-STRESS; NITRIC-OXIDE SYNTHASE; BLOOD-FLOW; IN-VIVO; SUPEROXIDE-DISMUTASE; ARTERY BIFURCATION; MECHANICAL-STRESS; GENE-EXPRESSION; YOUNG-ADULTS;
D O I
10.1259/bjr/59367266
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Atherosclerosis presents a massive healthcare burden in both the developing and developed world. There is mounting evidence relating to the involvement of haemodynamic factors in the pathogenesis of this process. This article aims to review the current understandings that have developed in this area, and to present a demonstrative case study obtained using state of the art computational fluid dynamics (CFD) methodology to model and analyse haemodynamic factors within the atheromatous carotid artery bifurcation.
引用
收藏
页码:S33 / S38
页数:6
相关论文
共 50 条
  • [21] Rotor Aeroelastic Stability Analysis Using Coupled Computational Fluid Dynamics/Computational Structural Dynamics
    Yeo, Hyeonsoo
    Potsdam, Mark
    Ormiston, Robert A.
    JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2011, 56 (04)
  • [22] Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI
    Steinman, DA
    Thomas, JB
    Ladak, HM
    Milner, JS
    Rutt, BK
    Spence, JD
    MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (01) : 149 - 159
  • [23] Rotor Structural Loads Analysis Using Coupled Computational Fluid Dynamics/Computational Structural Dynamics
    Yeo, Hyeonsoo
    Potsdam, Mark
    JOURNAL OF AIRCRAFT, 2016, 53 (01): : 87 - 105
  • [24] Computational fluid dynamics analysis of bypass surgery for a giant internal carotid artery aneurysm
    Panchal, Pratik M.
    Scaria, Sam
    Matham, Gowtham
    Sudhir, B. J.
    Patnaik, B. S. V.
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [25] Fluid and thermal analysis of a microchannel electronics cooler using computational fluid dynamics
    Dix, Joseph
    Jokar, Amir
    APPLIED THERMAL ENGINEERING, 2010, 30 (8-9) : 948 - 961
  • [26] Analysis of hydraulic components using computational fluid dynamics models
    Borghi, M
    Cantore, G
    Milani, M
    Paoluzzi, R
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1998, 212 (07) : 619 - 629
  • [27] ANALYSIS OF DECELERATORS IN MOTION USING COMPUTATIONAL FLUID-DYNAMICS
    STEEVES, EC
    AIAA 10TH AERODYNAMIC DECELERATOR SYSTEMS TECHNOLOGY CONFERENCE: A COLLECTION OF TECHNICAL PAPERS, 1989, : 269 - 278
  • [28] Maxillary sinus aeration analysis using computational fluid dynamics
    Dmitry Tretiakow
    Krzysztof Tesch
    Karolina Markiet
    Andrzej Skorek
    Scientific Reports, 12
  • [29] Analysis of conductive olfactory dysfunction using computational fluid dynamics
    Asama, Youji
    Furutani, Akiko
    Fujioka, Masato
    Ozawa, Hiroyuki
    Takei, Satoshi
    Shibata, Shigenobu
    Ogawa, Kaoru
    PLOS ONE, 2022, 17 (01):
  • [30] Analysis of S-4180 using Computational Fluid Dynamics
    Patel, Vidhiksha
    Bhise, Dipali
    Xavier, Johney
    Kumavat, Bharat
    Lode, Rakesh
    Pavaskar, Karthik
    Ramachandran, Divya
    2017 IEEE INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND CONTROL (ICAC3), 2017,