Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology

被引:21
|
作者
Speagle, Joshua S. [1 ,2 ]
Eisenstein, Daniel J. [1 ]
机构
[1] Harvard Univ, Dept Astron, 60 Garden St,MS 46, Cambridge, MA 02138 USA
[2] Univ Tokyo, Kavli IPMU WPI, UTIAS, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778583, Japan
关键词
methods: statistical; techniques: photometric; galaxies: distances and redshifts; SPECTRAL ENERGY-DISTRIBUTIONS; STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; INTERSTELLAR EXTINCTION; DUST ATTENUATION; LEGACY SURVEY; DATA PRODUCTS; AREA SURVEY; ULTRAVIOLET; EMISSION;
D O I
10.1093/mnras/stw1485
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.
引用
下载
收藏
页码:1186 / 1204
页数:19
相关论文
共 50 条
  • [41] Music Mood Visualization Using Self-Organizing Maps
    Plewa, Magdalena
    Kostek, Bozena
    ARCHIVES OF ACOUSTICS, 2015, 40 (04) : 513 - 525
  • [42] Environment classification using Kohonen self-organizing maps
    Burn, Kevin
    Home, Geoffrey
    EXPERT SYSTEMS, 2008, 25 (02) : 98 - 114
  • [43] Meteorological data analysis using self-organizing maps
    Tambouratzis, Tatiana
    Tambouratzis, George
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2008, 23 (06) : 735 - 759
  • [44] Using self-organizing maps to support video navigation
    Barecke, Thomas
    Kijak, Ewa
    Nuernberger, Andreas
    Detyniecki, Marcin
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 396 - 405
  • [45] Parallelization of analyses using self-organizing maps with PVM
    Lange, JS
    Schonmeier, P
    Freiesleben, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 389 (1-2): : 74 - 76
  • [46] Interactive face retrieval using self-organizing maps
    Navarrete, P
    Ruiz-del-Solar, J
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 687 - 691
  • [47] Constructive RBF structure by using self-organizing maps
    Xiong, QY
    Shi, WR
    Sun, Y
    Fan, M
    Xie, ZL
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: I, 2003, : 335 - 339
  • [48] Wave extreme characterization using self-organizing maps
    Barbariol, Francesco
    Falcieri, Francesco Marcello
    Scotton, Carlotta
    Benetazzo, Alvise
    Carniel, Sandro
    Sclavo, Mauro
    OCEAN SCIENCE, 2016, 12 (02) : 403 - 415
  • [49] Ice Shape Characterization Using Self-Organizing Maps
    McClain, Stephen T.
    Tino, Peter
    Kreeger, Richard E.
    JOURNAL OF AIRCRAFT, 2011, 48 (02): : 724 - 730
  • [50] Automatic Feature Engineering Using Self-Organizing Maps
    Rodrigues, Ericks da Silva
    Martins, Denis Mayr Lima
    de Lima Neto, Fernando Buarque
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,