Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - I. Methodology

被引:21
|
作者
Speagle, Joshua S. [1 ,2 ]
Eisenstein, Daniel J. [1 ]
机构
[1] Harvard Univ, Dept Astron, 60 Garden St,MS 46, Cambridge, MA 02138 USA
[2] Univ Tokyo, Kavli IPMU WPI, UTIAS, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778583, Japan
关键词
methods: statistical; techniques: photometric; galaxies: distances and redshifts; SPECTRAL ENERGY-DISTRIBUTIONS; STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; INTERSTELLAR EXTINCTION; DUST ATTENUATION; LEGACY SURVEY; DATA PRODUCTS; AREA SURVEY; ULTRAVIOLET; EMISSION;
D O I
10.1093/mnras/stw1485
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a method to substantially increase the flexibility and power of template fitting-based photometric redshifts by transforming a large number of galaxy spectral templates into a corresponding collection of 'fuzzy archetypes' using a suitable set of perturbative priors designed to account for empirical variation in dust attenuation and emission-line strengths. To bypass widely separated degeneracies in parameter space (e.g. the redshift-reddening degeneracy), we train self-organizing maps (SOMs) on large 'model catalogues' generated from Monte Carlo sampling of our fuzzy archetypes to cluster the predicted observables in a topologically smooth fashion. Subsequent sampling over the SOM then allows full reconstruction of the relevant probability distribution functions (PDFs). This combined approach enables the multimodal exploration of known variation among galaxy spectral energy distributions with minimal modelling assumptions. We demonstrate the power of this approach to recover full redshift PDFs using discrete Markov chain Monte Carlo sampling methods combined with SOMs constructed from Large Synoptic Survey Telescope ugrizY and Euclid YJH mock photometry.
引用
下载
收藏
页码:1186 / 1204
页数:19
相关论文
共 50 条
  • [21] Wireless localization using self-organizing maps
    Giorgetti, Gianni
    Gupta, Sandeep K. S.
    Manes, Gianfranco
    PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2007, : 293 - 302
  • [22] Shape indexing using self-organizing maps
    Suganthan, PN
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (04): : 835 - 840
  • [23] Project Management Using Self-Organizing Maps
    Parvizian, Jamshid
    Tarkesh, Named
    Atighehchian, Arezoo
    Farid, Sara
    INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 2005, 5 (01): : 23 - 31
  • [24] Color clustering using self-organizing maps
    Zhang, Xiao-Yu
    Chen, Jiu-Sheng
    Dong, Jian-Kang
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 986 - +
  • [25] Novelty detection using Self-Organizing Maps
    Ypma, A
    Duin, RPW
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1322 - 1325
  • [26] Organizing spectral image database using Self-Organizing Maps
    Kohonen, O
    Jääskeläinen, T
    Hauta-Kasari, M
    Parkkinen, J
    Miyazawa, K
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2005, 49 (04) : 431 - 441
  • [27] A Causal Model Using Self-Organizing Maps
    Chung, Younjin
    Takatsuka, Masahiro
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 591 - 600
  • [28] FMIG: Fuzzy Multilevel Interior Growing Self-Organizing Maps
    Tlili, Monia
    Ayadi, Thouraya
    Hamdani, Tarek M.
    Alimi, Adel M.
    2012 IEEE 24TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2012), VOL 1, 2012, : 822 - 827
  • [29] Fuzzy optimized self-organizing maps and their application to document clustering
    Romero, Francisco P.
    Peralta, Arturo
    Soto, Andres
    Olivas, Jose A.
    Serrano-Guerrero, Jesus
    SOFT COMPUTING, 2010, 14 (08) : 857 - 867
  • [30] Fuzzy optimized self-organizing maps and their application to document clustering
    Francisco P. Romero
    Arturo Peralta
    Andres Soto
    Jose A. Olivas
    Jesus Serrano-Guerrero
    Soft Computing, 2010, 14 : 857 - 867