Some properties of conjugate harmonic functions in a half-space

被引:0
|
作者
Ryabogin, Anatoly [2 ]
Ryabogin, Dmitry [1 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Stavropol State Univ, Dept Math & Phys, Stavropol, Russia
关键词
Hardy spaces; Subharmonic functions;
D O I
10.1016/j.jmaa.2010.03.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a multi-dimensional analog of the theorem of Hardy and Littlewood about the logarithmic bound of the L-p-average of the conjugate harmonic functions, 0 < p <= 1. We also give sufficient conditions for a harmonic vector to belong to H-p(R-+(n+1)), 0 < p <= 1. Published by Elsevier Inc.
引用
收藏
页码:686 / 693
页数:8
相关论文
共 50 条
  • [21] Harmonic Functions in Upper Half Space
    Pan, Guo-Shuang
    Qiao, Lei
    Deng, Guan-Tie
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (04) : 675 - 681
  • [22] On a Chain of Harmonic and Monogenic Potentials in Euclidean Half-space
    Brackx, F.
    De Bie, H.
    De Schepper, H.
    [J]. POTENTIAL ANALYSIS, 2014, 41 (02) : 613 - 645
  • [23] The harmonic motion of a rigid cylinder on an elastic half-space
    Kontomaris, Stylianos-Vasileios
    Malamou, Anna
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2020, 41 (01)
  • [24] On asymptotic expansion of the harmonic Berezin transform on the half-space
    Jahn, Jiri
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 720 - 730
  • [25] Some half-space theorems in the real projective space
    Marco A. L. Velásquez
    Henrique F. de Lima
    José H. H. de Lacerda
    [J]. São Paulo Journal of Mathematical Sciences, 2023, 17 : 595 - 614
  • [26] Some half-space theorems in the real projective space
    Velasquez, Marco A. L.
    de Lima, Henrique F.
    de Lacerda, Jose H. H.
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (02): : 595 - 614
  • [27] Boundary behaviour of Neumann harmonic functions with Lebesuge, Hardy and BMO traces in the upper half-space
    Chen, Jiahe
    Li, Bo
    Ma, Bolin
    Wu, Yinhuizi
    Zhang, Chao
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 897 - 924
  • [28] MOTION OF A VIBRATOR ON A HALF-SPACE AND ON A LAYERED HALF-SPACE
    FARRELL, WE
    [J]. GEOPHYSICS, 1979, 44 (03) : 332 - 332
  • [29] On some problems of diffusion in an isotropic half-space
    Matysiak, SJ
    Mieszkowski, R
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2003, 30 (05) : 625 - 632
  • [30] RESPONSE OF A PLATE AND ELASTIC HALF-SPACE TO HARMONIC-WAVES
    WHITTAKER, WL
    CHRISTIANO, P
    [J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1982, 10 (02): : 255 - 266