Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc

被引:11
|
作者
Ruan, Yan [1 ,2 ]
He, Jianrong [1 ,3 ]
Wu, Wei [4 ]
He, Ping [4 ]
Tian, Yanping [1 ]
Xiao, Lan [1 ]
Liu, Gaoke [1 ]
Wang, Jiali [1 ]
Cheng, Yuda [1 ]
Zhang, Shuo [1 ]
Yang, Yi [5 ]
Xiong, Jiaxiang [5 ]
Zhao, Ke [6 ]
Wan, Ying [2 ]
Huang, He [3 ]
Zhang, Junlei [1 ]
Jian, Rui [1 ]
机构
[1] Third Mil Med Univ, Dept Histol & Embryol, Lab Stem Cell & Dev Biol, Chongqing 400038, Peoples R China
[2] Third Mil Med Univ, Biomed Anal Ctr, Chongqing 400038, Peoples R China
[3] Third Mil Med Univ, Xinqiao Hosp, Dept Anesthesiol, Chongqing 400037, Peoples R China
[4] Third Mil Med Univ, Southwest Hosp, Dept Cardiothorac Surg, Chongqing 400038, Peoples R China
[5] Third Mil Med Univ, Coll Basic Med Sci, Expt Ctr Basic Med, Chongqing 400038, Peoples R China
[6] Beijing Inst Radiat Med, Beijing Proteome Res Ctr, State Key Lab Prote, Beijing 100850, Peoples R China
基金
中国国家自然科学基金;
关键词
embryonic stem cells; Nac1; c-Myc; transcriptional regulation; self-renewal; PROTEIN-INTERACTION NETWORK; SIGNALING PATHWAYS; POZ/BTB PROTEIN; CERVICAL CARCINOMAS; BTB/POZ PROTEIN; OVARIAN-CANCER; PLURIPOTENCY; EXPRESSION; COMPLEX; DIFFERENTIATION;
D O I
10.18632/oncotarget.17744
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. However, previous studies have predominantly focused on the role of Nac1 in psychomotor stimulant response and cancer pathogenesis. In this study, we report that Nac1 is a self-renewal promoting factor, but is not required for maintaining pluripotency of ESCs. Loss of function of Nac1 in ESCs results in a reduced proliferation rate and an enhanced differentiation propensity. Nac1 overexpression promotes ESC proliferation and delays ESC differentiation in the absence of leukemia inhibitory factor (LIF). Furthermore, we demonstrated that Nac1 directly binds to the c-Myc promoter and regulates c-Myc transcription. The study also revealed that the function of Nac1 in promoting ESC self-renewal appears to be partially mediated by c-Myc. These findings establish a functional link between the core and c-Myc-centered networks and provide new insights into mechanisms of stemness regulation in ESCs and cancer.
引用
收藏
页码:47607 / 47618
页数:12
相关论文
共 50 条
  • [21] Regulation of self-renewal in cancer stem cells
    Pelicci, P.
    EJC SUPPLEMENTS, 2010, 8 (05): : 160 - 160
  • [22] "Smart" microspheres for self-renewal of embryonic stem cells
    Cheng, Jie
    Na, Kyunga
    Kim, Hye-Sun
    Lee, Chang-Kyu
    Hyun, Jinho
    MACROMOLECULAR RESEARCH, 2013, 21 (02) : 134 - 136
  • [23] Promotion of self-renewal of embryonic stem cells by midkine
    Yao, Xing
    Tan, Zhou
    Gu, Bin
    Wu, Rong-rong
    Liu, Yu-kan
    Dai, Li-cheng
    Zhang, Ming
    ACTA PHARMACOLOGICA SINICA, 2010, 31 (05) : 629 - 637
  • [24] Nucleostemin maintains self-renewal of embryonic stem cells and promotes reprogramming of somatic cells to pluripotency
    Qu, Jian
    Bishop, J. Michael
    JOURNAL OF CELL BIOLOGY, 2012, 197 (06): : 731 - 745
  • [25] REGULATION OF SELF-RENEWAL IN BREAST STEM CELLS
    Di Fiore, Pier Paolo
    BREAST, 2011, 20 : S15 - S15
  • [26] Lysophosphatidic Acid Reduces Self-Renewal and Promotes Differentiation in Mouse Embryonic Stem Cells
    Lim, S.
    Kim, Y.
    Yea, K.
    Ryu, S.
    Suh, P.
    MOLECULAR BIOLOGY OF THE CELL, 2006, 17
  • [27] Self-renewal of embryonic stem cells through culture on nanopattern polydimethylsiloxane substrate
    Jeon, Kilsoo
    Oh, Hyun-Jik
    Lim, Hyejin
    Kim, Jung-Hyun
    Lee, Duk Hyun
    Lee, Eung-Ryoung
    Park, Bae Ho
    Cho, Ssang-Goo
    BIOMATERIALS, 2012, 33 (21) : 5206 - 5220
  • [28] MicroRNA REGULATION OF EMBRYONIC STEM CELL SELF-RENEWAL AND DIFFERENTIATION
    Melton, Collin
    Blelloch, Robert
    CELL BIOLOGY OF STEM CELLS, 2010, 695 : 105 - 117
  • [29] Regulation of Embryonic Stem Cell Self-Renewal and Differentiation by MicroRNAs
    Ran, Xi
    Xiao, Chun-Hong
    Xiang, Gui-ming
    Ran, Xin-Ze
    CELLULAR REPROGRAMMING, 2017, 19 (03) : 150 - 158
  • [30] Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal
    Merrill, Bradley J.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (09):