Review on vacuum ultraviolet generation in low-pressure plasmas

被引:25
|
作者
Popovic, Dean [1 ,2 ]
Mozetic, Miran [1 ]
Vesel, Alenka [1 ]
Primc, Gregor [1 ]
Zaplotnik, Rok [1 ]
机构
[1] Jozef Stefan Inst, Dept Surface Engn, Ljubljana, Slovenia
[2] Inst Phys, Bijenicka Cesta 46, Zagreb 10000, Croatia
关键词
low-pressure discharges; plasma treatment; VUV irradiation; VUV spectroscopy; SURFACE MODIFICATION; DISCHARGES; PHOTOCHEMISTRY;
D O I
10.1002/ppap.202100061
中图分类号
O59 [应用物理学];
学科分类号
摘要
Low-pressure nonequilibrium plasmas can be a source of intense radiation in the vacuum ultraviolet (VUV) range which can play an important role in the surface modification of solid materials. Herein, we review the available literature on VUV radiation from low-pressure gaseous plasmas sustained by inductively and capacitively coupled radiofrequency discharges, microwave, and magnetized discharges. The reported VUV fluxes range from about 10(14)-10(17) photons cm(-2)center dot s(-1) while electron density range from 10(9) to 10(12) cm(-3). The correlations between the measured VUV fluxes and parameters, such as gas pressure, electron density, and discharge power are shown. The results summarized in this study represent a rough guide for the scientists involved in plasma-surface interactions. As the flux of VUV photons depends on numerous parameters, it is currently only possible to estimate its order of magnitude.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Review of recent developments and applications in low-pressure (vacuum outlet) gas chromatography
    Sapozhnikova, Yelena
    Lehotay, Steven J.
    ANALYTICA CHIMICA ACTA, 2015, 899 : 13 - 22
  • [22] Generation of Bose-Einstein condensates in a well isolated low-pressure vacuum chamber
    Toyoda, K
    Takahashi, Y
    Yabuzaki, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (06) : 1445 - 1449
  • [23] Titanium etching in fluorinated low-pressure radiofrequency plasmas
    Amirov, II
    Slovetskii, DI
    HIGH ENERGY CHEMISTRY, 1997, 31 (03) : 202 - 206
  • [24] Formation of dust in low-pressure magnetized hydrocarbon plasmas
    Laguardia, L.
    Cremona, A.
    De Angeli, M.
    Lazzaro, E.
    Ratynskaia, S.
    Passoni, M.
    Dellasega, D.
    Gervasini, G.
    Grosso, G.
    Schiavone, R.
    Vassallo, E.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [26] On the chemistry mechanism for low-pressure chlorine process plasmas
    Levko, Dmitry
    Raja, Laxminarayan L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2022, 40 (05):
  • [27] Low-pressure diffusion equilibrium of electronegative complex plasmas
    Ostrikov, K
    Denysenko, IB
    Vladimirov, SV
    Xu, S
    Sugai, H
    Yu, MY
    PHYSICAL REVIEW E, 2003, 67 (05):
  • [28] GIGATRON(R) - A NEW SOURCE FOR LOW-PRESSURE PLASMAS
    PETASCH, W
    RAUCHLE, E
    WEICHART, J
    BICKMANN, H
    SURFACE & COATINGS TECHNOLOGY, 1995, 74-5 (1-3): : 200 - 205
  • [29] TREATMENT OF POLYMER SURFACES BY LOW-PRESSURE MICROWAVE PLASMAS
    MUTEL, B
    DESSAUX, O
    GOUDMAND, P
    GRIMBLOT, J
    CARPENTIER, A
    SZARZYNSKI, S
    REVUE DE PHYSIQUE APPLIQUEE, 1988, 23 (07): : 1253 - 1255
  • [30] Simulation benchmarks for low-pressure plasmas: Capacitive discharges
    Turner, M. M.
    Derzsi, A.
    Donko, Z.
    Eremin, D.
    Kelly, S. J.
    Lafleur, T.
    Mussenbrock, T.
    PHYSICS OF PLASMAS, 2013, 20 (01)