Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps

被引:25
|
作者
Li, GZ [1 ]
Guan, SH [1 ]
Marshall, AG [1 ]
机构
[1] Florida State Univ, Natl High Magnet Field Lab, Ion Cyclotron Resonance Program, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S1044-0305(98)00005-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Starting from the classical Boltzmann distribution, we obtain the ion density distribution in the limit of either high temperature/low density (Coulomb interaction energy much less than ion kinetic energy) or low temperature/high density (kinetic energy much less than Coulomb interaction energy), and the trapping force for an ion cloud in Penning ion cyclotron resonance, Paul (quadrupole), and combined (Paul trap in a uniform axial static magnetic field) traps. At equilibrium (total angular momentum conserved), the ion cloud rotates at a constant frequency in Penning and combined traps. Ln a Penning trap, the maximum ion density is proportional to B-2/m (B is magnetic field and m is the mass of ions), whereas the maximum ion density in a Paul trap is proportional to (V-rf(2)/m Omega(2)r(0)(4)), with Mathieu equation axial q value < 0.4 to satisfy the pseudopotential approximation. Ion maximum densities in both Penning and Paul ion traps depend on the trapping field (magnetic or electric) and ion mass, but not on ion charge. Ln a Penning trap at maximum ion density (zero pressure), the radial (but not the axial) trapping potential is mass dependent, whereas both radial and axial potentials in a Paul trap at maximum ion density are mass dependent. (C) 1998 American Society for Mass Spectrometry.
引用
收藏
页码:473 / 481
页数:9
相关论文
共 50 条
  • [41] Stability Diagrams for Paul Ion Traps Driven by Two-Frequencies
    Possa, Gabriela C.
    Roncaratti, Luiz F.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (27): : 4915 - 4922
  • [42] KINETIC-ENERGY AND SPATIAL WIDTH OF ION CLOUDS IN PAUL TRAPS
    DESAINTFUSCIEN, M
    SCHUBERT, M
    SIEMERS, I
    BLATT, R
    APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1992, 54 (03): : 246 - 246
  • [43] Experimental Methods for Trapping Ions Using Microfabricated Surface Ion Traps
    Hong, Seokjun
    Lee, Minjae
    Kwon, Yeong-Dae
    Cho, Dong-il Dan
    Kim, Taehyun
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (126):
  • [44] Comparison of the Paul ion trap to the linear ion trap for use in global proteomics
    Riter, LS
    Gooding, KM
    Hodge, BD
    Julian, RK
    PROTEOMICS, 2006, 6 (06) : 1735 - 1740
  • [45] FROM A SINGLE-ION TO A MESOSCOPIC SYSTEM - CRYSTALLIZATION OF IONS IN PAUL TRAPS
    WALTHER, H
    PHYSICA SCRIPTA, 1995, T59 : 360 - 368
  • [46] Surface planar ion chip for linear radio-frequency Paul traps
    Nan Jin-Yin
    Qu Qiu-Zhi
    Zhou Zi-Chao
    Li Xiao-Lin
    Wang Yu-Zhu
    Liu, Liang
    CHINESE PHYSICS LETTERS, 2007, 24 (05) : 1238 - 1241
  • [47] Physics of non-thermal Penning-trap electron plasma and application to ion trapping
    Schauer, MM
    Barnes, DC
    Umstadter, KR
    PHYSICS OF PLASMAS, 2004, 11 (01) : 9 - 15
  • [48] Lifting of the trapping potential during ion storage for multi-anion production in a Penning trap
    Martinez, Franklin
    Bandelow, Steffi
    Breitenfeldt, Christian
    Marx, Gerrit
    Schweikhard, Lutz
    Wienholtz, Frank
    Ziegler, Falk
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2012, 313 : 30 - 35
  • [49] Density distribution in unipolar ion streams
    Deutsch, W
    ANNALEN DER PHYSIK, 1933, 16 (05) : 588 - 612
  • [50] Determination of equilibrium density distribution and temperature of a pure electron plasma confined in a Penning trap
    Aoki, J.
    Kiwamoto, Y.
    Kawai, Y.
    PHYSICS OF PLASMAS, 2006, 13 (11)