Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps

被引:25
|
作者
Li, GZ [1 ]
Guan, SH [1 ]
Marshall, AG [1 ]
机构
[1] Florida State Univ, Natl High Magnet Field Lab, Ion Cyclotron Resonance Program, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S1044-0305(98)00005-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Starting from the classical Boltzmann distribution, we obtain the ion density distribution in the limit of either high temperature/low density (Coulomb interaction energy much less than ion kinetic energy) or low temperature/high density (kinetic energy much less than Coulomb interaction energy), and the trapping force for an ion cloud in Penning ion cyclotron resonance, Paul (quadrupole), and combined (Paul trap in a uniform axial static magnetic field) traps. At equilibrium (total angular momentum conserved), the ion cloud rotates at a constant frequency in Penning and combined traps. Ln a Penning trap, the maximum ion density is proportional to B-2/m (B is magnetic field and m is the mass of ions), whereas the maximum ion density in a Paul trap is proportional to (V-rf(2)/m Omega(2)r(0)(4)), with Mathieu equation axial q value < 0.4 to satisfy the pseudopotential approximation. Ion maximum densities in both Penning and Paul ion traps depend on the trapping field (magnetic or electric) and ion mass, but not on ion charge. Ln a Penning trap at maximum ion density (zero pressure), the radial (but not the axial) trapping potential is mass dependent, whereas both radial and axial potentials in a Paul trap at maximum ion density are mass dependent. (C) 1998 American Society for Mass Spectrometry.
引用
收藏
页码:473 / 481
页数:9
相关论文
共 50 条
  • [31] An introduction to the trapping of clusters with ion traps and electrostatic storage devices
    Bredy, R.
    Bernard, J.
    Chen, L.
    Montagne, G.
    Li, B.
    Martin, S.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (15)
  • [32] Cryogenic ion trapping systems with surface-electrode traps
    Antohi, P. B.
    Schuster, D.
    Akselrod, G. M.
    Labaziewicz, J.
    Ge, Y.
    Lin, Z.
    Bakr, W. S.
    Chuang, I. L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (01):
  • [33] Optical tomography and measuring quantum states of an ion in a Paul trap and in a Penning trap
    Man'ko, OV
    ICONO '98: QUANTUM OPTICS, INTERFERENCE PHENOMENA IN ATOMIC SYSTEMS, AND HIGH-PRECISION MEASUREMENTS, 1999, 3736 : 68 - 75
  • [34] COMPUTER-SIMULATION OF SINGLE-ION TRAJECTORIES IN PAUL-TYPE ION TRAPS
    LONDRY, FA
    ALFRED, RL
    MARCH, RE
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1993, 4 (09) : 687 - 705
  • [35] Trapping secondary electrons in ExB drift for an alpha generating penning ion source
    Savard, N.
    Groutso, A.
    Melanson, S.
    Potkins, D.
    Dehnel, M.
    19TH INTERNATIONAL CONFERENCE ON ION SOURCES - ICIS2021, 2022, 2244
  • [36] Extreme field calculations for Penning ion traps and corresponding strong laser field scenarios
    Lyu, Chunhai
    Sikora, Bastian
    Harman, Zoltan
    Keitel, Christoph H.
    MOLECULAR PHYSICS, 2023,
  • [37] The ion cyclotron resonance frequency of short, single-species plasmas in Penning traps
    Barlow, SE
    Tinkle, MD
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (01)
  • [38] EQUILIBRIUM DISTRIBUTION OF NITROGEN ION CHARGES
    NIKOLAEV, VS
    FATEEVA, LN
    DMITRIEV, IS
    TEPLOVA, IA
    SOVIET PHYSICS JETP-USSR, 1957, 5 (05): : 789 - 792
  • [39] Dynamics and control of fast ion crystal splitting in segmented Paul traps
    Kaufmann, H.
    Ruster, T.
    Schmiegelow, C. T.
    Schmidt-Kaler, F.
    Poschinger, U. G.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [40] KINETIC-ENERGY AND SPATIAL WIDTH OF ION CLOUDS IN PAUL TRAPS
    SCHUBERT, M
    SIEMERS, I
    BLATT, R
    APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1990, 51 (06): : 414 - 417