Fractal properties of robust strange nonchaotic attractors in maps of two or more dimensions

被引:55
|
作者
Kim, JW [1 ]
Kim, SY
Hunt, B
Ott, E
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[6] Kangwon Natl Univ, Dept Phys, Chunchon 200701, Kangwon Do, South Korea
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 03期
关键词
D O I
10.1103/PhysRevE.67.036211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the existence of robust strange nonchaotic attractors in a simple class of quasiperiodically forced systems. Rigorous results are presented demonstrating that the resulting attractors are strange in the sense that their box-counting dimension D-0 is larger than their information dimension D-1 by 1 (i.e., D-0 = D-1+1). We also show how this property is manifested in numerical experiments.
引用
收藏
页数:8
相关论文
共 26 条