Cluster Monte Carlo distributions in fractal dimensions between two and three: Scaling properties and dynamical aspects for the Ising model

被引:0
|
作者
Monceau, P
Hsiao, PY
机构
[1] Univ Paris 07, CNRS, FR2438, Lab Phys Theor Mat Condensee, F-75251 Paris 05, France
[2] Univ Evry Val Essonne, Dept Phys & Modelisat, F-91025 Evry, France
来源
PHYSICAL REVIEW B | 2002年 / 66卷 / 10期
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Wolff cluster size distributions obtained from Monte Carlo simulations of the Ising phase transition on Sierpinski fractals with Hausdorff dimensions D-f between 2 and 3. These distributions are shown to be invariant when going from an iteration step of the fractal to the next under a scaling of the cluster sizes involving the exponent (beta/nu)+(gamma/nu). Moreover, the decay of the autocorrelation functions at the critical points enables us to calculate the Wolff dynamical critical exponents z for three different values of D-f. The Wolff algorithm is more efficient in reducing the critical slowing down when D-f is lowered.
引用
收藏
页数:5
相关论文
共 38 条