Cluster Monte Carlo distributions in fractal dimensions between two and three: Scaling properties and dynamical aspects for the Ising model

被引:0
|
作者
Monceau, P
Hsiao, PY
机构
[1] Univ Paris 07, CNRS, FR2438, Lab Phys Theor Mat Condensee, F-75251 Paris 05, France
[2] Univ Evry Val Essonne, Dept Phys & Modelisat, F-91025 Evry, France
来源
PHYSICAL REVIEW B | 2002年 / 66卷 / 10期
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the Wolff cluster size distributions obtained from Monte Carlo simulations of the Ising phase transition on Sierpinski fractals with Hausdorff dimensions D-f between 2 and 3. These distributions are shown to be invariant when going from an iteration step of the fractal to the next under a scaling of the cluster sizes involving the exponent (beta/nu)+(gamma/nu). Moreover, the decay of the autocorrelation functions at the critical points enables us to calculate the Wolff dynamical critical exponents z for three different values of D-f. The Wolff algorithm is more efficient in reducing the critical slowing down when D-f is lowered.
引用
收藏
页数:5
相关论文
共 38 条
  • [31] BREAKDOWN OF SELF-SIMILAR SCALING IN THE TWO-DIMENSIONAL RANDOM-FIELD ISING-MODEL - A MONTE-CARLO STUDY
    GAWLINSKI, ET
    KUMAR, S
    GRANT, M
    GUNTON, JD
    KASKI, K
    PHYSICAL REVIEW B, 1985, 32 (03): : 1575 - 1583
  • [32] Monte-Carlo study of the three-dimensional conserved-order-parameter Ising model via finite-size scaling analysis
    Hadjiagapiou, I. A.
    Malakis, A.
    Martinos, S. S.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2006, 12 (01) : 63 - 71
  • [33] Combined density functional and dynamical cluster quantum Monte Carlo calculations of the three-band Hubbard model for hole-doped cuprate superconductors
    Kent, P. R. C.
    Saha-Dasgupta, T.
    Jepsen, O.
    Andersen, O. K.
    Macridin, A.
    Maier, T. A.
    Jarrell, M.
    Schulthess, T. C.
    PHYSICAL REVIEW B, 2008, 78 (03):
  • [34] Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method
    Xiong, Wanjie
    Zhong, Fan
    Yuan, Weilun
    Fan, Shuangli
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [35] Monte Carlo analysis of the critical properties of the two-dimensional randomly bond-diluted Ising model via Wang-Landau algorithm
    Hadjiagapiou, Ioannis A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (07) : 1279 - 1288
  • [36] Monte Carlo analysis of critical properties of the two-dimensional randomly site-diluted Ising model via Wang-Landau algorithm
    Hadjiagapiou, I. A.
    Malakis, A.
    Martinos, S. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (10) : 2256 - 2266
  • [37] Quantum-critical properties of the one- and two-dimensional random transverse-field Ising model from large-scale quantum Monte Carlo simulations
    Kraemer, Calvin
    Koziol, Jan Alexander
    Langheld, Anja
    Hoermann, Max
    Schmidt, Kai Phillip
    SCIPOST PHYSICS, 2024, 17 (02):
  • [38] Dynamic Cluster Quantum Monte Carlo Simulations of a Two-Dimensional Hubbard Model with Stripelike Charge-Density-Wave Modulations: Interplay between Inhomogeneities and the Superconducting State
    Maier, T. A.
    Alvarez, G.
    Summers, M.
    Schulthess, T. C.
    PHYSICAL REVIEW LETTERS, 2010, 104 (24)