Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K

被引:107
|
作者
Beckers, Arnout [1 ]
Jazaeri, Farzan [1 ]
Enz, Christian [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Integrated Circuits Lab, CH-2000 Neuchatel, Switzerland
来源
基金
欧盟地平线“2020”;
关键词
28 nm bulk CMOS; cryo-CMOS; subthreshold swing; freeze-out; cryoelectronics; cryogenic; interface charge traps; MOS transistor modeling; slope factor; 4.2; K; FREEZE-OUT; INTERFACE; MOSFETS; DEVICES; PERFORMANCE; TRANSISTORS; GATE;
D O I
10.1109/JEDS.2018.2817458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an experimental investigation, compact modeling, and low-temperature physics-based modeling of a commercial 28-nm bulk CMOS technology operating at cryogenic temperatures. The physical and technological parameters are extracted at 300, 77, and 4.2K from dc measurements made on various geometries. The simplified-EKV compact model is used to accurately capture the dc characteristics of this technology down to 4.2K and to demonstrate the impact of cryogenic temperatures on the essential analog figures-of-merit. A new body-partitioning methodology is then introduced to obtain a set of analytical expressions for the electrostatic profile and the freeze-out layer thickness in field-effect transistors operating from deep-depletion to inversion. The proposed physics-based model relies on the drift-diffusion transport mechanism to obtain the drain current and subthreshold swing, and is validated with the experimental results. This model explains the degradation in subthreshold swing at deep-cryogenic temperatures by the temperature-dependent occupation of interface charge traps. This leads to a degradation of the theoretical limit of the subthreshold swing at deep-cryogenic temperatures.
引用
收藏
页码:1007 / 1018
页数:12
相关论文
共 50 条
  • [31] Characterization of GigaRad Total Ionizing Dose and Annealing Effects on 28-nm Bulk MOSFETs
    Zhang, Chun-Min
    Jazaeri, Farzan
    Pezzotta, Alessandro
    Bruschini, Claudio
    Borghello, Giulio
    Faccio, Federico
    Mattiazzo, Serena
    Baschirotto, Andrea
    Enz, Christian
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (10) : 2639 - 2647
  • [32] Efficiency Optimization of Silicon Photonic Links in 65-nm CMOS and 28-nm FDSOI Technology Nodes
    Polster, Robert
    Thonnart, Yvain
    Waltener, Guillaume
    Gonzalez, Jose-Luis
    Cassan, Eric
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2016, 24 (12) : 3450 - 3459
  • [33] A 3.5K 4-6 GHz RF-DAC for Cryogenic Quantum Applications in 28-nm Bulk CMOS
    Guo, Yanshu
    Li, Yaoyu
    Huang, Wenqiang
    Liu, Qichun
    Li, Tiefu
    Wang, Zhihua
    Jiang, Hanjun
    Zheng, Yuanjin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (09) : 4071 - 4075
  • [34] A V-Band Variable Gain Low-Noise Amplifier in 28-nm Bulk CMOS
    Zhang, Siwei
    Li, Hui-Yang
    Xu, Jin-Xu
    Zhang, Xiu Yin
    [J]. 2022 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS, IMWS-AMP, 2022,
  • [35] Down-converter solutions for 77-GHz automotive radar sensors in 28-nm FD-SOI CMOS technology
    Nocera, Claudio
    Cavarra, Andrea
    Ragonese, Egidio
    Palmisano, Giuseppe
    Papotto, Giuseppe
    [J]. 2018 14TH CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME 2018), 2018, : 153 - 156
  • [36] A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS
    Hedayati, Mahsa Keshavarz
    Abdipour, Abdolali
    Shirazi, Reza Sarraf
    Cetintepe, Cagri
    Staszewski, Robert Bogdan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (10) : 1460 - 1464
  • [37] The application of low energy ion scattering spectroscopy (LEIS) in sub 28-nm CMOS technology
    Dittmar, Kornelia
    Triyoso, Dina H.
    Erben, Elke
    Metzger, Joachim
    Binder, Robert
    Brongersma, Hidde H.
    Weisheit, Martin
    Engelmann, Hans-Juergen
    [J]. SURFACE AND INTERFACE ANALYSIS, 2017, 49 (12) : 1175 - 1186
  • [38] A 50 Gb/s PAM-4 EAM driver in 28-nm CMOS technology
    Zhang, Qiuyue
    Zheng, Xuqiang
    Lv, Fangxu
    Liu, Zhaoyang
    Xu, Hua
    Li, Weijie
    Jin, Zhi
    Lai, Mingche
    Liu, Xinyu
    [J]. MICROELECTRONICS JOURNAL, 2023, 140
  • [39] A High-Linearity 6-GHz Phase Interpolator in 28-nm CMOS Technology
    AbdelHadi, Amr
    Warn, Mohamed
    Ibrahim, Sameh
    [J]. 2017 PROCEEDINGS OF THE JAPAN-AFRICA CONFERENCE ON ELECTRONICS, COMMUNICATIONS, AND COMPUTERS (JAC-ECC), 2017, : 41 - 44
  • [40] Characterization of an Associative Memory Chip in 28 nm CMOS Technology
    Annovi, Alberto
    Calderini, Giovanni
    Capra, Stefano
    Checcucci, Bruno
    Crescioli, Francesco
    De Canio, Francesco
    Fedi, Giacomo
    Frontini, Luca
    Garci, Maroua
    Gentsos, Christos
    Kubota, Takashi
    Liberali, Valentino
    Palla, Fabrizio
    Shojaii, Jafar
    Sotiropoulou, Calliope-Louisa
    Stabile, Alberto
    Traversi, Gianluca
    Viret, Sebastien
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,