Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K

被引:107
|
作者
Beckers, Arnout [1 ]
Jazaeri, Farzan [1 ]
Enz, Christian [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Integrated Circuits Lab, CH-2000 Neuchatel, Switzerland
来源
基金
欧盟地平线“2020”;
关键词
28 nm bulk CMOS; cryo-CMOS; subthreshold swing; freeze-out; cryoelectronics; cryogenic; interface charge traps; MOS transistor modeling; slope factor; 4.2; K; FREEZE-OUT; INTERFACE; MOSFETS; DEVICES; PERFORMANCE; TRANSISTORS; GATE;
D O I
10.1109/JEDS.2018.2817458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an experimental investigation, compact modeling, and low-temperature physics-based modeling of a commercial 28-nm bulk CMOS technology operating at cryogenic temperatures. The physical and technological parameters are extracted at 300, 77, and 4.2K from dc measurements made on various geometries. The simplified-EKV compact model is used to accurately capture the dc characteristics of this technology down to 4.2K and to demonstrate the impact of cryogenic temperatures on the essential analog figures-of-merit. A new body-partitioning methodology is then introduced to obtain a set of analytical expressions for the electrostatic profile and the freeze-out layer thickness in field-effect transistors operating from deep-depletion to inversion. The proposed physics-based model relies on the drift-diffusion transport mechanism to obtain the drain current and subthreshold swing, and is validated with the experimental results. This model explains the degradation in subthreshold swing at deep-cryogenic temperatures by the temperature-dependent occupation of interface charge traps. This leads to a degradation of the theoretical limit of the subthreshold swing at deep-cryogenic temperatures.
引用
收藏
页码:1007 / 1018
页数:12
相关论文
共 50 条
  • [1] Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures
    Beckers, Arnout
    Jazaeri, Farzan
    Bohuslayskyi, Heorhii
    Hutin, Louis
    De Franceschi, Silvano
    Enz, Christian
    [J]. SOLID-STATE ELECTRONICS, 2019, 159 : 106 - 115
  • [2] 28-nm FD-SOI CMOS RF Figures of Merit Down to 4.2 K
    Nyssens, Lucas
    Halder, Arka
    Esfeh, Babak Kazemi
    Planes, Nicolas
    Flandre, Denis
    Kilchytska, Valeriya
    Raskin, Jean-Pierre
    [J]. IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2020, 8 (08): : 646 - 654
  • [3] Design-oriented Modeling of 28 nm FDSOI CMOS Technology down to 4.2 K for Quantum Computing
    Beckers, Arnout
    Jazaeri, Farzan
    Bohuslayskyi, Heorhii
    Hutin, Louis
    De Franceschi, Silvano
    Enz, Christian
    [J]. 2018 JOINT INTERNATIONAL EUROSOI WORKSHOP AND INTERNATIONAL CONFERENCE ON ULTIMATE INTEGRATION ON SILICON (EUROSOI-ULIS), 2018, : 93 - 96
  • [4] ASET and TID Characterization of a Radiation Hardened Bandgap Voltage Reference in a 28-nm Bulk CMOS Technology
    Chen, Jianjun
    Chi, Yaqing
    Liang, Bin
    Yuan, Hengzhou
    Wen, Yi
    Xing, Haiyuan
    Yao, Xiaohu
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2022, 69 (05) : 1141 - 1147
  • [5] Characterization of Multilayer Metal Gate Fuse in 28-nm CMOS Logic Technology
    Hsieh, Min-Che
    Lin, Yu-Cheng
    Chin, Yung-Wen
    Chang, Tzong-Sheng
    King, Ya-Chin
    Lin, Chrong-Jung
    [J]. IEEE ELECTRON DEVICE LETTERS, 2013, 34 (09) : 1088 - 1090
  • [6] Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing
    Beckers, Arnout
    Jazaeri, Farzan
    Ruffino, Andrea
    Bruschini, Claudio
    Baschirotto, Andrea
    Enz, Christian
    [J]. 2017 47TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2017, : 62 - 65
  • [7] The Role of Mobility Degradation in the BTI-Induced RO Aging in a 28-nm Bulk CMOS Technology
    Sangani, D.
    Diaz-Fortuny, J.
    Bury, E.
    Kaczer, B.
    Gielen, G.
    [J]. 2023 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, IRPS, 2023,
  • [8] Integrated Variability Measurements of 28 nm FDSOI MOSFETs down to 4.2 K for Cryogenic CMOS Applications
    Paz, Bruna Cardoso
    Le Guevel, Loick
    Casse, Mikael
    Billiot, Gerard
    Pillonnet, Gael
    Jansen, Aloysius
    Haendler, Sebastien
    Juge, Andre
    Vincent, Emmanuel
    Galy, Philippe
    Ghibaudo, Gerard
    Vinet, Maud
    de Franceschi, Silvano
    Meunier, Tristan
    Gaillard, Fred
    [J]. 2020 IEEE 33RD INTERNATIONAL CONFERENCE ON MICROELECTRONIC TEST STRUCTURES (ICMTS), 2020, : 157 - 161
  • [9] Error-compensated time integrator in 28-nm CMOS technology
    Ji, Xincun
    Wang, Youhua
    Shen, Mengqi
    Guo, Yufeng
    [J]. ELECTRONICS LETTERS, 2020, 56 (16) : 806 - 807
  • [10] Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K
    Bardin, Joseph C.
    Jeffrey, Evan
    Lucero, Erik
    Huang, Trent
    Das, Sayan
    Sank, Daniel Thomas
    Naaman, Ofer
    Megrant, Anthony Edward
    Barends, Rami
    White, Ted
    Giustina, Marissa
    Satzinger, Kevin J.
    Arya, Kunal
    Roushan, Pedram
    Chiaro, Benjamin
    Kelly, Julian
    Chen, Zijun
    Burkett, Brian
    Chen, Yu
    Dunsworth, Andrew
    Fowler, Austin
    Foxen, Brooks
    Gidney, Craig
    Graff, Rob
    Klimov, Paul
    Mutus, Josh
    McEwen, Matthew J.
    Neeley, Matthew
    Neill, Charles J.
    Quintana, Chris
    Vainsencher, Amit
    Neven, Hartmut
    Martinis, John
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (11) : 3043 - 3060