Real-time physiological measurements of oxygen using a non-invasive self-referencing optical fiber microsensor

被引:26
|
作者
Ferreira, Fernando [1 ,2 ]
Luxardi, Guillaume [1 ]
Reid, Brian [1 ]
Ma, Li [1 ,3 ]
Raghunathan, VijayKrishna [4 ,5 ,6 ]
Zhao, Min [1 ,7 ]
机构
[1] Univ Calif Davis, Inst Regenerat Cures, Dept Dermatol, Davis, CA 95616 USA
[2] Univ Minho, Dept Biol, CBMA, Braga, Portugal
[3] Shanghai Skin Dis Hosp, Skin & Cosmet Res Dept, Shanghai, Peoples R China
[4] Univ Houston, Dept Basic Sci, Coll Optometry, Houston, TX USA
[5] Univ Houston, Ocular Surface Inst, Coll Optometry, Houston, TX USA
[6] Univ Houston, Dept Biomed Engn, Cullen Coll Engn, Houston, TX USA
[7] Univ Calif Davis, Inst Regenerat Cures, Dept Ophthalmol, Sacramento, CA 95817 USA
关键词
REACTIVE OXYGEN; EMBRYONIC-DEVELOPMENT; HYPOXIA; PROBE; FLUX; LUMINESCENCE; TEMPERATURE; DIFFUSION; SENSORS; GROWTH;
D O I
10.1038/s41596-019-0231-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Reactive molecular oxygen (O-2) plays important roles in bioenergetics and metabolism and is implicated in biochemical pathways underlying angiogenesis, fertilization, wound healing and regeneration. Here we describe how to use the scanning micro-optrode technique (SMOT) to measure extracellular fluxes of dissolved O-2. The self-referencing O-2-specific micro-optrode (also termed micro-optode and optical fiber microsensor) is a tapered optical fiber with an O-2-sensitive fluorophore coated onto the tip. The O-2 concentration is quantified by fluorescence quenching of the fluorophore emission upon excitation with blue-green light. The micro-optrode presents high spatial and temporal resolutions with improved signal-to-noise ratio (in the picomole range). In this protocol, we provide step-by-step instructions for micro-optrode calibration, validation, example applications and data analysis. We describe how to use the technique for cells (Xenopus oocyte), tissues (Xenopus epithelium and rat cornea), organs (Xenopus gills and mouse skin) and appendages (Xenopus tail), and provide recommendations on how to adapt the approach to different model systems. The basic, user-friendly system presented here can be readily installed to reliably and accurately measure physiological O-2 fluxes in a wide spectrum of biological models and physiological responses. The full protocol can be performed in similar to 4 h. Oxygen plays key roles in bioenergetics, metabolism, signaling pathways and developmental biology. This protocol describes how to perform quantitative oxygen flux measurements on cells, ex vivo tissues and various model animals in vivo.
引用
收藏
页码:207 / 235
页数:29
相关论文
共 50 条
  • [31] Non-invasive optical mapping of the piglet brain in real time
    Fantini, S
    Franceschini, MA
    Gratton, E
    Hueber, D
    Rosenfeld, W
    Maulik, D
    Stubblefield, PG
    Stankovic, MR
    OPTICS EXPRESS, 1999, 4 (08): : 308 - 314
  • [32] Microfabricated sensors for non-invasive, real-time monitoring of organoids
    Kim, Yoojeong
    Chica-Carrillo, Erick C.
    Lee, Hyunjoo J.
    MICRO AND NANO SYSTEMS LETTERS, 2024, 12 (01)
  • [33] Photometric sensor system for a non-invasive real-time hemoglobin
    Timm, Ulrich
    Kraitl, Jens
    Schnurstein, Kirstin
    Ewald, Hartmut
    ADVANCED BIOMEDICAL AND CLINICAL DIAGNOSTIC SYSTEMS XI, 2013, 8572
  • [34] Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux
    Smith, PJS
    Hammar, K
    Porterfield, DM
    Sanger, RH
    Trimarchi, JR
    MICROSCOPY RESEARCH AND TECHNIQUE, 1999, 46 (06) : 398 - 417
  • [35] Non-invasive assessment of cerebral autoregulation in real-time mode
    Semenyutin, V. B.
    Aliev, V. A.
    Ivankov, A. A.
    Patzak, A.
    Panuntsev, G. K.
    Govorov, B. B.
    Nikiforova, A. A.
    CEREBROVASCULAR DISEASES, 2015, 39 : 46 - 46
  • [36] A Differential Optical Sensor for Non-Invasive Real-Time Monitoring of Ultrafiltration Rate in Hemofiltration Therapies
    Visotti, Andrea
    Ravagli, Enrico
    Perazzini, Claudia
    Drudi, Debora
    Ghidini, Corrado
    Severi, Stefano
    IEEE SENSORS JOURNAL, 2018, 18 (20) : 8597 - 8604
  • [37] Non-invasive fetal ABO genotyping in maternal plasma using real-time PCR
    Song, Wenqian
    Zhou, Shihang
    Shao, Linnan
    Wang, Ni
    Pan, Lingzi
    Yu, Weijian
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2015, 53 (12) : 1943 - 1950
  • [38] Real-time Motion Tracking for Non-invasive Ultrasound Cardiac Therapy using Histotripsy
    Miller, Ryan M.
    Kim, Yohan
    Lin, Kuang-Wei
    Owens, Gabe
    Cain, Charles A.
    Xu, Zhen
    2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 935 - 938
  • [39] Using Non-Invasive, Real-Time Imaging Technology To Assess the Status of Donor Kidneys
    Verbesey, J.
    Cooper, M.
    Peter, A.
    Derek, R.
    Moody, P.
    Chen, Y.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2013, 13 : 307 - 307
  • [40] Non-invasive real-time monitoring of cell concentration and viability using Doppler ultrasound
    Akbari, Samin
    Anderson, Phillip
    Zang, Han
    Ganjian, Amin
    Balke, Robert
    Kwon, Taehong
    Pollard, David
    SLAS TECHNOLOGY, 2022, 27 (06): : 368 - 375