Parameter estimation for a class of radial basis function-based nonlinear time-series models with moving average noises *

被引:5
|
作者
Zhou, Yihong [1 ]
Wang, Yanjiao [2 ]
Ma, Fengying [3 ]
Ding, Feng [1 ]
Hayat, Tasawar [4 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Sch Elect Engn & Automat, Jinan 250353, Peoples R China
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
TRACKING CONTROL; DISTURBANCE REJECTION; IDENTIFICATION METHOD; FAULT-DIAGNOSIS; ALGORITHM; NETWORKS; OPTIMIZATION; MANIPULATOR; SELECTION; SYSTEMS;
D O I
10.1016/j.jfranklin.2021.01.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the parameter estimation for radial basis function-based state-dependent autoregressive models with moving average noises (RBF-ARMA models). An extended projection algorithm is derived based on the negative gradient search. In order to reduce the sensitivity of the algorithm to noise and reduce the fluctuations of the parameter estimation errors, a modified extended stochastic gradient algorithm is proposed. By introducing a moving data window, a modified moving data window-based extended stochastic gradient algorithm is further developed to improve the parameter estimation accuracy. The simulation results show that the proposed algorithms can effectively estimate the parameters of the RBF-ARMA models. (c) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2576 / 2595
页数:20
相关论文
共 50 条
  • [31] Modelling gene expression time-series with radial basis function neural networks
    Möller-Levet, CS
    Yin, HJ
    Cho, KH
    Wolkenhatier, O
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1191 - 1195
  • [32] PARAMETER-ESTIMATION FOR SOME TIME-SERIES MODELS WITHOUT CONTIGUITY
    DAVIS, RA
    ROSENBLATT, M
    STATISTICS & PROBABILITY LETTERS, 1991, 11 (06) : 515 - 521
  • [33] Radial basis function approach to nonlinear Granger causality of time series
    Ancona, N
    Marinazzo, D
    Stramaglia, S
    PHYSICAL REVIEW E, 2004, 70 (05): : 7 - 1
  • [34] Online Parameter Optimization Scheme for the Kernel Function-Based Mixture Models Disturbed by Colored Noises
    Li, Jimei
    Ding, Feng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (08) : 3960 - 3964
  • [35] EMBEDDING DIMENSION ESTIMATION OF CHAOTIC TIME-SERIES USING SELF-GENERATING RADIAL BASIS FUNCTION NETWORK
    KATAYAMA, R
    KUWATA, K
    KAJITANI, Y
    WATANABE, M
    FUZZY SETS AND SYSTEMS, 1995, 71 (03) : 311 - 327
  • [36] INTERPRETATION OF R2 IN AUTOREGRESSIVE-MOVING AVERAGE TIME-SERIES MODELS
    NELSON, CR
    AMERICAN STATISTICIAN, 1976, 30 (04): : 175 - 180
  • [37] ESTIMATION OF THE PARAMETERS OF LINEAR TIME-SERIES MODELS SUBJECT TO NONLINEAR RESTRICTIONS
    NAGARAJ, NK
    FULLER, WA
    ANNALS OF STATISTICS, 1991, 19 (03): : 1143 - 1154
  • [39] A local linear radial basis function neural network for financial time-series forecasting
    Nekoukar, Vahab
    Beheshti, Mohammad Taghi Hamidi
    APPLIED INTELLIGENCE, 2010, 33 (03) : 352 - 356
  • [40] A local linear radial basis function neural network for financial time-series forecasting
    Vahab Nekoukar
    Mohammad Taghi Hamidi Beheshti
    Applied Intelligence, 2010, 33 : 352 - 356